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The random walk model revisited
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Abstract. The random walk model was introduced and investigated by D. Heyer [1]. It is a loss de-
velopment model, where the geometric Brownian motion, which is frequently used in Mathematical
Finance (for example, recall the famous Black-Scholes option pricing formula), is applied to cumu-
lative losses. While Heyer applied his model to estimating INBR (incurred but not yet reported)
losses of each accident year, he made no observation on the year-on-year loss (the loss to be paid
in the specific future year). To estimate year-on-year losses is one of urgent issues in the non-life
insurance industry. In this paper, as another application of the random walk model, the conditional
distribution and the conditional confidence interval of the year-on-year loss to be paid in the specific
future year, being given the cumulative losses of the present, will be investigated.

Keywords. random walk model, IBNR, geometric Brownian motion, distribution, confidence interval,
cumulative loss

1. Introduction

In the random walk model introduced by D. Heyer [1], it
is assumed that the cumulative loss development Pt of age
t obeys the stochastic differential equation (SDE in short)

dPt = µ(t)Ptdt + σ(t)PtdBt,

where µ, σ : [0,∞) → R are continuous, and dBt stands for
the Itô integral with respect to the 1-dimensional Brownian
motion {Bt}t=0. For Itô integrals, see Section A. If µ(t)
and σ(t) are both constant functions, then {Pt}t=0 is the
geometric Brownian motion, which plays a key role in the
famous Black-Scholes model in Mathematical Finance.

Let n ∈ N. For 1 5 i 5 n, t = 0, denote by Si
t the cu-

mulative loss from accident year k as of age t. See Figure 1
below. In this paper, we assume that each cumulative loss

Accident Age
year 1 · · · n
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n
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t
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1

Figure 1: Run-Off Triangle

Si
t obeys the same SDE that Pt does;

(1) dSi
t = µ(t)Si

tdt + σ(t)Si
tdBi

t, i = 1, 2, . . . , n,

where {B1
t }t=0, . . . , {Bn

t }t=0 are independent 1-dimensio-
nal Brownian motions with Bi

0 = 0, i = 1, 2, . . . , n. Due to

Itô’s formula, it holds (Proposition 3, Sect.B) that

(2) Si
t = Si

s exp
(
ν(s; t) +

∫ t

s

σ(u)dBi
u

)
,

where

ν(s; t) =
∫ t

s

{
µ(u) − 1

2σ2(u)
}
du.

For k with n + 1 5 k 5 2n, define Tk by

(3) Tk =
2n−k∑
i=0

{Sn−i
k−n+i − Sn−i

k−n+i−1}.

See Figure 2 below. By definition, Tk stands for the total

Accident Age
year · · · k − n · · · n

...
k − n Sk−n

n
...

n − 1 Sn−1
k−n+1

n Sn
k−n

Figure 2: Tk

loss to be paid in the year k. The aim of this paper is to
investigate the conditional distribution and the conditional
confidence intervals of Tk given the present cumulative loss.
More precisely, for r = (r1, . . . , rn) with rj > 0, 1 5 j 5 n,
denote by P (r) the conditional probability given Sj

ℓ = rj ,
1 5 j, ℓ 5 n with j + ℓ = n + 1;

P (r)(A) = P (A |Sj
n−j+1 = rj , j = 1, . . . , n), A ∈ F ,

1
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where (Ω,F , P ) is the underlying probability space, on
which the Brownian motions {Bi

t}t=0, 1 5 i 5 n, are de-
fined. The conditions are given on the diagonal as below
(Figure 3); In this paper, we investigate the distribution

Accident Age
year 1 2 · · · n − 1 n

1 S1
n

S2
n−1

...
n − 1 Sn−1

2

n Sn
1

Figure 3: Conditioning

and the confidence intervals of Tk under P (r).
The organization of the paper is as follows. In the first

three sections, main observations will be made by assuming
several mathematical facts. The proofs of the facts are
given in Sections A and B at the end of the paper.

In the sequel, the “age” parameter t in Si
t ’s is assumed

to run over natural numbers N; For example, {St}t=0 is
equal to {St}t=1,2,....

2. Distribution

Let Si
t , Tk, and P (r) be as in the previous section. In this

section, we investigate the distribution of Tk under P (r).
We start this section with introducing some notations.

For a random variable X, we write X ∼ LN(m, v) if X
obeys the log-normal distribution, i.e., the probability den-
sity function fm,v of X is of the form

fm,v(x) =
1√

2πv x
e−(log x−m)2/2vX(0,∞)(x), x ∈ R

where XA stands for the indicator function of A;

XA(x) =

{
1, x ∈ A,

0, x /∈ A.

Define fm,v;ℓ,u : R → [0,∞) by

fm,v;ℓ,u(z) =
∫ ∞

−∞
fm,v

( z

w
+ 1

)
fℓ,u(w)

1
w

dw, z ∈ R.

Since Sn−i
k−n+i − Sn−i

k−n+i−1, i = 0, . . . , 2n − k, are in-
dependent under P (r) (Proposition 4, Sect.B), the distri-
bution of Tk is obtained as the convolution of those of
Sn−i

k−n+i −Sn−i
k−n+i−1’s. Thus it suffices to specify the distri-

bution of Sn−i
k−n+i − Sn−i

k−n+i−1 under P (r).
By the very definition of conditional probability, under

P (r), it holds that

(4)

Sn−i
k−n+i − Sn−i

k−n+i−1

=
[

Sn−i
k−n+i

Sn−i
k−n+i−1

− 1
]
×

Sn−i
k−n+i−1

Sn−i
i+1

× rn−i.

We first assume that k > n + 2. By Proposition 4 in
Sect.B, Sn−i

k−n+i/Sn−i
k−n+i−1 and Sn−i

k−n+i−1/Sn−i
i+1 are indepen-

dent, and obey the distributions

LN(ν(k−n + i− 1; k−n + i), σ2(k−n + i− 1; k−n + i)),

and

LN(ν(i + 1; k − n + i − 1), σ2(i + 1; k − n + i − 1)),

respectively, where

σ2(s; t) =
∫ t

s

σ(u)2du.

If we set

m(i, k) = ν(k − n + i − 1; k − n + i),

v(i, k) = σ2(k − n + i − 1; k − n + i),
ℓ(i, k; r) = ν(i + 1; k − n + i − 1) + log rn−i,

u(i, k) = σ2(i + 1; k − n + i − 1),

and
f i

k,r = fm(i,k),v(i,k);ℓ(i,k;r),u(i,k),

then, by virtue of Proposition 5 in Sect.B, f i
k,r is the prob-

ability density function of Sn−i
k−n+i − Sn−i

k−n+i−1 under P (r);

P (r)(Sn−i
k−n+i − Sn−i

k−n+i−1 5 a) =
∫ a

−∞
f i

k,r(x)dx

for every a ∈ R.

We next assume that k = n + 2. Then, the quantity
Sn−i

k−n+i−1/Sn−i
i+1 in the right hand side of (4) equals to 1.

Hence we have that

P (r)(Sn−i
k−n+i − Sn−i

k−n+i−1 5 a)

= P (r)

(
rn−i

Sn−i
k−n+i

Sn−i
k−n+i−1

5 a + rn−i

)
.

If we put

m(i; r) = ν(i + 1; i + 2) + log rn−i,

v(i) = σ2(i + 1; i + 2),

and

f i
n+2,r(x) = fm(i;r),v(i)(x − rn−i), x ∈ R,

then, by Proposition 5 in Sect.B, f i
n+2,r is the probability

density function of Sn−i
k−n+i − Sn−i

k−n+i−1 under P (r);

P (Sn−i
k−n+i − Sn−i

k−n+i−1 5 a) =
∫ a

−∞
f i

n+2,r(x)dx,

for any a ∈ R.

Summing up the above observations, we arrive at
Theorem 1. Let f i

k,r’s be as above. Define

fk,r = f0
k,r ∗ f1

k,r ∗ · · · ∗ f2n−k
k,r ,

where ∗ indicates the convolution. Then, fk,r is the proba-
bility density function of Tk under P (r);

P (r)
(
Tk 5 a) =

∫ a

−∞
fk,r(x)dx, for every a ∈ R.
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3. Confidence interval

We first compute the expectation tk(r) of Tk under P (r).
It holds that

Sn−i
t = rn−i

Sn−i
t

Sn−i
i+1

under P (r).

By Proposition 4 in Sect.B, under P (r),

Sn−i
t

Sn−i
i+1

∼ LN(ν(i + 1; t), σ2(i + 1; t)).

We then have that

EP (r)

[
Sn−i

t

Sn−i
i+1

]
= eµ(i+1;k−n+i),

where EP (r) stands for the expectation with respect to P (r),
and

µ(s; t) =
∫ t

s

µ(u)du = ν(s; t) +
1
2
σ2(s; t).

Hence

tk(r) = EP (r) [Tk]

=
2n−k∑
i=0

rn−i

{
eµ(i+1;k−n+i) − eµ(i+1;k−n+i−1)

}
.

For α ∈ (0, 100), choose Br
α and Rr

α so that∫ tk(r)+Br
α

tk(r)−Br
α

fk,r(x)dx = 1 − α

100
,∫ ∞

Rr
α

fk,r(x)dx =
α

100
.

Then it holds that

P (r)
(
Tk /∈ (tk(r) − Br

α, tk(r) + Br
α)

)
=

α

100
,

and
P (r)

(
Tk = Rr

α

)
=

α

100
.

Hence we have that

Proposition 1. (i) The two-sided (100 − α)% confidence
interval of Tk is (tk(r) − Br

α, tk(r) + Br
α).

(ii) The one-sided (100 − α)% confidence interval of Tk is
[0, Rr

α).

From the second assertion, we see that the total loss of
the year k is at most Rr

α with (100 − α)% reliability.
Using the Chebychev inequality, we shall compute more

concrete confidence interval. In what follows, we denote by
VP (r)(X) the variance of X under P (r).

Due to the Chebychev inequality, it holds that

(5) P (r)(|Tk − tk(r)| = C) 5 1
C2

VP (r)(Tk), C > 0.

By Proposition 4 in Sect.B, Sn−i
k−n+i − Sn−i

k−n+i−1, 0 5 i 5
2n − k, are independent, and hence

(6) VP (r)(Tk) =
2n−k∑
i=0

VP (r)(Sn−i
k−n+i − Sn−i

k−n+i−1).

By virtue of (4), we see that

VP (r)(Sn−i
k−n+i − Sn−i

k−n+i−1)

= r2
n−iVP (r)

([
Sn−i

k−n+i

Sn−i
k−n+i−1

− 1
]
×

Sn−i
k−n+i−1

Sn−i
i+1

)
.

Plugging this, Propositions 4 and 5, and (6) into (5), we
obtain that

P (r)
(
|Tk − tk(r)| = C) 5 1

C2

2n−k∑
i=0

r2
n−iV

k
i ,

where

V k
i = e2µ(i+1;k−n+i−1)+σ2(i+1;k−n+i−1)

× e2µ(k−n+i−1;k−n+i)

×
{
eσ2(k−n+i−1;k−n+i) − 1

}
+ e2µ(i+1;k−n+i−1)

{
eσ2(i+1;k−n+i−1) − 1

}
×

{
eµ(k−n+i−1;k−n+i) − 1

}2
.

For α ∈ (0, 100), choose Cr
α so that

1
(Cr

α)2

2n−k∑
i=0

r2
n−iV

k
i 5 α

100
.

Then it holds that

P (r)
(
Tk /∈ (tk(r) − Cr

α, tk(r) + Cr
α)

)
5 α

100
.

Thus we have that
Proposition 2. The interval

(tk(r) − Cr
α, tk(r) + Cr

α)

is the two-sided more than (100 − α)% confidence interval
of Tk.
Remark 1. For a square integrable random variable X,
E[(X − a)2], a ∈ R, is minimized when a = E[X], i.e., the
variance of X is the minimum of E[(X−a)2], a ∈ R. In this
sense, the above two-sided confidence interval is the best
one as far as one controls the probability P (|X − a| = C)
by E[(X − a)2] via the Chebychev inequality.

A. Itô integrals of deterministic
continuous function

In this section, we shall give a brief review on Itô inte-
grals of deterministic continuous function. For general Itô
integrals, see [2].
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Let {βt}t=0 be a 1-dimensional Brownian motion on a
probability space (Ω,F , P ), and σ : [0,∞) → R a contin-
uous function. For s < t, set T s,t

k,i = s + i(t − s)2−k, and
define

Ik(s; t) =
2k−1∑
i=0

σ(T s,t
k,i )

{
βT s,t

k,i+1
− βT s,t

k,i

}
.

If m > k, then it holds that

Ik(s; t) − Im(s; t)

=
2k−1∑
i=0

2m−k−1∑
j=0

{
σ(T s,t

k,i ) − σ(T s,t
m,2m−ki+j

)
}

×
{

βT s,t

m,2m−ki+j+1
− βT s,t

m,2m−ki+j

}
.

By the independent increments property of the Brownian
motion and the fact that βu − βv obeys the normal distri-
bution of mean 0 and covariance u − v, it holds that

E
[{

βT s,t

m,2m−ki+j+1
− βT s,t

m,2m−ki+j

}
×

{
βT s,t

m,2m−kp+q+1
− βT s,t

m,2m−kp+q

}]
= δipδjq2−m(t − s).

Plugging this into the above identity, we have that

E[(Ik(s; t) − Im(s; t))2]

=
2k−1∑
i=0

2m−k−1∑
j=0

{
σ(T s,t

k,i ) − σ(T s,t
m,2m−ki+j

)
}22−m(t − s)

5
[

max
05i5k,05j52m−k

{σ(T s,t
k,i ) − σ(T s,t

m,2m−ki+j
)}2

]
(t − s)

−→ 0 (k,m → ∞).

Thus, Ik(s; t) admits L2-limit, say
∫ t

s
σ(u)dβu, which is the

Itô integral of σ(u) over [s, t];

(7) lim
k→∞

E

[(
Ik(s; t) −

∫ t

s

σ(u)dβu

)2]
= 0.

Since stochastic integrals of deterministic function was
first considered by N. Wiener, an Itô integral of determin-
istic function is often called the Wiener integral.

B. Mathematical observations

We first give an expression of Si
t . As remarked at the end

of the first section, we assume that the age parameter t
runs over N.
Proposition 3. Si

t satisfies that

(8) Si
t = Si

s exp
(

ν(s; t) +
∫ t

s

σ(u)dBi
u

)
,

i = 1, 2, . . . , n.

Proof. Let 0 < s and

Xt =
∫ t

s

ν(u)du +
∫ t

s

σ(u)dBi
u,

where

ν(u) = µ(u) − 1
2
σ(u)2.

Applying Itô’s formula ([2]) to f(Xt), t = s, where f(x) =
ex, we see that Yt = f(Xt) obeys the SDE

dYt = f ′(Xt)dXt +
1
2
f ′′(Xt)dXt · dXt

= Yt{ν(t)dt + σ(t)dBi
t} +

1
2
Ytσ(t)2dt

= µ(t)Ytdt + σ(t)YtdBi
t.

Due to the uniqueness of solution ([2]), we have that

Si
t = Si

sYt = Si
s exp

(∫ t

s

ν(u)du +
∫ t

s

σ(u)dBi
u

)
.

This implies the desired expression of Si
t .

We next investigate on Si
t under the conditional proba-

bility P (r).

Proposition 4. Under the probability measure P (r), the
following assertions hold.
(i) For i 5 n and s = i + 1, the processes {Sn−i

t /Sn−i
s }t>s

and {Sn−i
v }i+15v5s are independent. Moreover,

Sn−i
t /Sn−i

s ∼ LN(ν(s; t), σ2(s; t)).

(ii) {S2
t }t=n, {S3

t }t=n−1, . . . , {Sn
t }t=2 are independent.

The proof of the proposition is broken into several steps,
each step being a lemma.

Lemma 1. Let s < t. Under the probability measure P ,

Si
t/Si

s ∼ LN(ν(s; t), σ2(s; t)).

Proof. We continue to use the same notation as used in
Sect.A. Due to the observation in the previous section, if
we set

Ii
k(s; t) =

2k−1∑
j=0

σ(T s,t
k,j)

{
Bi

T s,t
k,j+1

− Bi
T s,t

k,j

}
,

then we obtain that

lim
k→∞

E

[(
Ii
k(s; t) −

∫ t

s

σ(u)dBi
u

)2]
= 0,

E[Ii
k(s; t)] = 0,

E[(Ii
k(s; t))2] =

2k−1∑
j=0

σ(T s,t
k,j)

22−k(t − s) → σ2(s; t).
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Since each Ii
k(s; t) obeys the normal distribution, these

yield that

E

[
exp

(√
−1λ

∫ t

s

σ(u)dBi
u

)]
= lim

k→∞
E[exp(

√
−1λIi

k(s; t)]

= lim
k→∞

exp
(
−E[(Ii

k(s; t))2]λ2

2

)
= exp

(
−σ2(s; t)λ2

2

)
for any λ ∈ R.

Thus
∫ t

s
σ(u)dBi

u obeys the normal distribution of mean 0
and variance σ2(s; t). In conjunction with (2), this implies
the desired assertion.

Lemma 2. Let s > 0. Under P , {Si
t/Si

s}t>s and {Si
v}v5s

are independent.

Proof. We continue to use the same notation as used in
the proof of Lemma1. Due to the independent increment
property of the Brownian motion, we see that {Ii

k(0; v)}v5s

and {Ii
k(s; t)}t>s are independent. By (7), this implies that

so are
{∫ v

0
σ(u)dBi

u

}
v5s

and
{∫ t

s
σ(u)dBi

u

}
t>s

. Plugging

this independence into (8), we see that {Si
t/Si

s}t>s and
{Si

v}v5s are independent.

Lemma 3. Under P , {S1
t }t=0, {S2

t }t=0, . . . , {Sn
t }t=0 are

independent.

Proof. We use the same notation as used in the proof of
Lemma1. Due to the independence of components of n-
dimensional Brownian motion,

{I1
k(0; t)}t=0, {I2

k(0; t)}t=0, . . . , {In
k (0; t)}t=0

are independent. Letting k → ∞, we obtain the desired
assertion.

Proof of Proposition 4. (i) Let i+1 5 v1 5 · · · 5 vm 5 s <
t1 < · · · < tk. For a1, . . . , am, b1, . . . , bk ∈ R, put

A = {Sn−i
tp

/Sn−i
s 5 bp, 1 5 p 5 k},

B = {Sn−i
vq

5 aq, 1 5 q 5 m}.

It follows from Lemmas 2 and 3 that

P (r)(A ∩ B) = P (A ∩ B|Sn−i
i+1 = rn−i)

= P (A)P (B|Sn−i
i+1 = rn−i)

= P (A|Sn−i
i+1 = rn−i)P (B|Sn−i

i+1 = rn−i)

= P (r)(A)P (r)(B).

This implies first the desired independence, and then in
conjunction with Lemma 1, does the desired conclusion on
the distribution.
(ii) The assertion follows from Lemmas 2 and 3 by the sim-
ilar argument as employed to prove the assertion (i). The
details are omitted.

We finally make some observations on log-normal distri-
butions.
Proposition 5. Let X,Y be independent random variables
such that X ∼ LN(m, v) and Y ∼ LN(ℓ, u). Then,
(i) fm,v;ℓ,u is the probability density function of the random
variable Y (X − 1).
(ii) The variance V (Y (X − 1)) of Y (X − 1) is given by

V (Y (X − 1)) = e2ℓ+2ue2m+v(ev − 1)

+ e2ℓ+u(eu − 1)(em+(v/2) − 1)2.

Proof. (i) Let g : R → R be a bounded continuous function.
Due to the independence of X and Y , we have that

E[g(Y (X−1))] =
∫ ∞

−∞

∫ ∞

−∞
g(y(x−1))fm,v(x)fℓ,u(y)dxdy.

The Jacobi matrix for the change of variables z = y(x− 1)
and w = y is (

1/w −z/w2

0 1

)
.

Hence we have that

E[g(Y (X − 1))] =
∫ ∞

−∞
g(z)fm,v;ℓ,u(z)dz.

This completes the proof.
(ii) Since E[X] = em+(v/2) and E[X2] = e2m+2v, due to
the independence of X and Y , we have that

V (Y (X − 1))

= E[Y 2]E[(X − 1)2] − {E[Y ]E[X − 1]}2

= e2ℓ+2u(e2m+2v − 2em+(v/2) + 1)

− e2ℓ+u(em+(v/2) − 1)2

= e2ℓ+2ue2m+v(ev − 1) + e2ℓ+u(eu − 1)(em+(v/2) − 1)2.

Acknowledgments

The paper is the fruits of the industry-university joint re-
search on non-life insurance models by the Nisshin Fire
& Marine Insurance Co., Ltd, and the Faculty of Math-
ematics, Kyushu University. The authors are grateful to
Mr. Sugiyama, conducting the joint research, and the mem-
bers of the research for stimulating discussions.

The second author also thanks for the supports in part
by the Grant-in-Aid for Scientific Research (B) 18340038,
and the Global COE Program “Education and Research
Hub for Mathematics-for-Industry”.

The authors thank the anonymous referee for his/her
careful reading and helpful comments.

References

[1] Heyer, D.: Random walk model for paid develop-
ment, in: CAS Forum 2001 Fall, (2001), 239–254
(http://www.casact.org/pubs/forum/01fforum/
01ff239.pdf).



6 Journal of Mathematics for Industry, Vol.1(2009A-1)

[2] Øksendal, B.: Stochastic differential equations, An in-
troduction with applications, 5th ed., Springer, 1998.

Takehiro Hirotsu
Nisshin Fire & Marine Insurance Co., Ltd,
2-3 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8329, Japan
Setsuo Taniguchi
Faculty of Mathematics, Kyushu University, Fukuoka 812-
8581, Japan.
E-mail: taniguch(at)math.kyushu-u.ac.jp


