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Abstract. We consider the problem of constructing a functional regression modeling with functional
predictors and a functional response. Discretely observed data for each individual are expressed as
a smooth function, using Gaussian basis functions. The functional regression model is estimated
by the maximum penalized likelihood method, assuming that the coefficient parameters are trans-
formed into a functional form. A crucial issue in constructing functional regression models is the
selection of regularization parameters involved in the regularization method. We derive information-
theoretic and Bayesian model selection criteria for evaluating the estimated model. Monte Carlo
simulations and real data analysis are conducted to examine the performance of our functional
regression modeling strategy.
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1. Introduction

Functional data analysis provides a useful tool for analyz-
ing a data set observed at possibly differing time points
for each individual, and its effectiveness has been reported
in various fields of applications such as ergonomics, meteo-
rology and chemometrics (see e.g., Ramsay and Silverman,
2002; 2005; Ferraty and Vieu, 2006). We consider the prob-
lem of constructing a functional regression model which is
the functional version of the ordinary regression model.

Various model building procedures have been considered
for functional regression models with functional predictors
and scalar responses. Rossi et al. (2005) described a neural
network approach and James (2002) extended the model
to the generalized linear model. Furthermore, Araki et
al. (2008) proposed the use of Gaussian basis functions
along with the technique of regularization. Matsui et al.
(2008) extended the model to the functional version of the
multivariate regression model.

On the other hand, Ramsay and Dalzell (1991) consid-
ered a functional regression model which both predictor
and response are given as functions, and thereafter Ram-
say and Silverman (2005) considered its modeling strategy.
They estimated the model by the least squares method,
and then evaluated it by the squared correlation, R2, in the
framework of the functional regression model. Yao et al.
(2005) also applied the modeling strategy to the analysis of
sparse longitudinal data. Furthermore, Malfait and Ram-
say (2003) and Harezlak et al. (2007) considered historical
functional linear models which are used to model such de-
pendencies of the response on the history of the predictor
values. The models estimated by the least squares method
yield unstable and/or unfavorable estimates. Moreover, R2

considered as the goodness of fit a model is not appropriate
to the prediction of newly observed data. Yamanishi and
Tanaka (2003) estimated it by the weighted least squares
method and evaluated it by the cross-validation.

We develop estimation and evaluation methods for func-
tional regression models where both multiple predictors
and the response are functions. Discretized observations
are converted into functions, using a Gaussian basis ex-
pansion along with the technique of regularization. Ad-
vantages of Gaussian basis functions are that it can provide
a useful instrument for transforming discrete observations
into functional form and also be applied to analyze a set
of surface fitting data. In order to obtain stable parame-
ter estimates, a functional regression model is estimated by
the maximum penalized likelihood method. Our modeling
strategy yields more flexible results in terms of prediction
ability.

A crucial issue in the functional regression modeling is
the choice of regularization parameters involved in the me-
thod of regularization. We derive model selection criteria
from an information-theoretic and Bayesian approach in
order to select regularization parameters effectively. The
proposed modeling strategy is applied to the analysis of
meteorology data. We predict the fluctuation of annual
precipitation using the information of weather data.

This paper is organized as follows. In Section 2 we intro-
duce a functional regression model with functional predic-
tors and a functional response. Section 3 devotes how to
estimate the model. Firstly we describe the conventional
estimation method and secondly propose new estimation
method. We derive model selection criteria for evaluating
the model constructed by our estimation procedure in Sec-
tion 4. In Section 5, Monte Carlo simulations are conducted
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to investigate the efficiency of our modeling procedure. In
Section 6 we also apply the proposed modeling strategy to
the analysis of real data. Summary and concluding remarks
are given in Section 7.

2. Functional regression model with
functional predictors and response

Suppose we have n sets of M functional predictors and
a functional response {(xαm(s), yα(t)); s ∈ Sm, t ∈ T ,
α = 1, . . . , n, m = 1, . . . ,M}, where Sm ⊂ R and T ⊂ R
are, respectively, ranges of variables Xm and Y given as
functions. It is assumed that both functional predictors
xαm(s) and functional responses yα(t) can be, respectively,
expressed as smooth functions

xαm(s) =
Jm∑
j=1

c̃αmjϕmj(s) = c̃T
αmϕm(s),

yα(t) =
K∑

k=1

d̃αkψk(t) = d̃
T

αψ(t),

(1)

where c̃αm = (c̃αm1, . . . , c̃αmJm)T and d̃α = (d̃α1, . . . , d̃αK)T

are coefficient vectors, ϕm(s) = (ϕm1(s), . . . , ϕmJm(s))T

and ψ(t) = (ψ1(t), . . . , ψK(t))T are vectors of basis func-
tions. Here we use Gaussian basis functions, due to Kawano
and Konishi (2007), given as follows:

(2)
ϕmj(s) = exp

{
−

(s − τ
(m)
j+2)2

2h2
m

}
,

ψk(t) = exp
{
− (t − τk+2)2

2h2

}
,

where τ
(m)
j and τk are equally spaced knots so that the

τ
(m)
j satisfy τ

(m)
1 < . . . < τ

(m)
4 = min(s) < . . . < τ

(m)
J+2 =

max(s) < . . . < τ
(m)
J+4 and τk similarly, hm = (τ (m)

j+2−τ
(m)
j )/3

and h = (τk+2 − τk)/3. Coefficients c̃αm and d̃α are ob-
tained by smoothing techniques described in Appendix A.

In order to model the relationship between predictors
and a response, we consider the following functional re-
gression model (Ramsay and Silverman, 2005; Shimokawa
et al., 2000):

yα(t) = β0(t) +
M∑

m=1

∫
Sm

xαm(s)βm(s, t)ds + εα(t),(3)

where β0(t) is a parameter function, βm(s, t) are bivari-
ate coefficient functions which impose varying weights on
xαm(s) at arbitrary time t ∈ T , and εα(t) are error func-
tions. Using the same basis functions as those used for the
predictor and response functions, we express the coefficient
functions βm(s, t) as follows:

βm(s, t) =
∑
j,k

ϕmj(s)bmjkψk(t) = ϕT
m(s)Bmψ(t),(4)

where Bm = (bmjk)j,k are Jm × K coefficient matrices.
The function β0(t) plays the role of a constant term in

the standard regression model. Here, we eliminate it by
centering the functional regression model (3) for the sub-
sequent estimation procedure. Centered predictors x∗

αm(s)
and responses y∗

α(t) are, respectively, obtained by

x∗
αm(s) = xαm(s) − x̄m(s)

= c̃T
αmϕm(s) − c̄T

mϕm(s)

= cT
αmϕm(s),

y∗
α(t) = yα(t) − ȳ(t)

= d̃
T

αψ(t) − d̄
T
ψ(t)

= dT
αψ(t),

where cαm = c̃αm − c̄m and dα = d̃α − d̄ with c̄m =∑
α c̃αm/n and d̄ =

∑
α d̃α/n. Then (3) can be rewritten

in the form

y∗
α(t) =

M∑
m=1

∫
Sm

x∗
αm(s)βm(s, t)ds + ε∗α(t),(5)

where ε∗α(t) = εα(t) − ε̄(t). It follows from equations (1)
and (4) that the functional regression model (5) can be
expressed as

dT
αψ(t) =

M∑
m=1

cT
αmWϕm

Bmψ(t) + ε∗α(t)(6)

= zT
αBψ(t) + ε∗α(t),

where zα = (cT
α1Wϕ1 , . . . , c

T
αMWϕM )T with Wϕm =

∫
ϕm(s)

ϕT
m(s)ds and B = (BT

1 , . . . , BT
M )T . When we use the Gaus-

sian basis functions given in (2), (j, k)-th elements of Wϕm

can be easily calculated and are given by

W
(j,k)
ϕm

=
√

πh2
m exp

{
−

(τ (m)
j+2 − τ

(m)
k+2)

2

4h2
m

}
.

From equation (6), the problem of estimating the coeffi-
cient functions βm(s, t) in (3) is replaced by the problem
of estimating the parameter matrix B.

3. Estimation

We consider the problem of estimating the parameter ma-
trix B in the functional regression model (6). First we
describe the least squares method, and then propose the
maximum likelihood and maximum penalized likelihood
method.

3.1. Least squares method

Ramsay and Silverman (2005) and Shimokawa et al. (2000)
estimated B in the model (6) by minimizing the integrated
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residual sum of squares given by

n∑
α=1

∫
T

[
y∗

α(t) −
M∑

m=1

∫
Sm

x∗
αm(s)βm(s, t)ds

]2

dt

(7)

=
∫
T

tr
{

(Dψ(t) − ZBψ(t)) (Dψ(t) − ZBψ(t))T
}

dt

= tr
{

(D − ZB) Wψ (D − ZB)T
}

,

where D = (d∗
1, . . . , d

∗
n)T , Z = (z1, . . . , zn)T and Wψ =∫

T ψ(t)ψT (t)dt. The least squares estimator B̂ is then
given by

vec(B̂) = (Wψ ⊗ ZT Z)−1vec(ZT DWψ),

where vec(·) is an operator that transforms the column-
wise vectors of a matrix into a vector and ⊗ represents a
Kronecker product. When we use Gaussian basis functions
(2), Wψ is nonsingular and B̂ can be expressed as

B̂ = (ZT Z)−1ZT D.(8)

This estimate has the same form as a least squares esti-
mator for ordinary multivariate regression models with a
design matrix Z and a response matrix D.

3.2. Maximum likelihood method

We consider estimating the functional regression model (6)
by the maximum likelihood method. Suppose error func-
tions ε∗α(t) are represented by a linear combination of basis
functions ψk(t), which are the same as those for the re-
sponse functions y∗

α(t), that is,

ε∗α(t) =
K∑

k=1

eαkψk(t) = eT
αψ(t),(9)

where the K-dimensional vectors eα = (eα1, . . . , eαK)T are
assumed to be independent and identically normally dis-
tributed with mean vector 0 and variance-covariance ma-
trix Σ. Then the functional regression model (6) can be
represented as

dT
αψ(t) = zT

αBψ(t) + eT
αψ(t), eα ∼i.i.dNK(0, Σ).(10)

By multiplying the equation (10) by ψT (t) and then inte-
grating with respect to T , it can be rewritten as

dT
αWψ = zT

αBWψ + eT
αWψ.(11)

Since Wψ is nonsingular, we obtain

dα = BT zα + eα, eα ∼i.i.dNK(0,Σ),(12)

which has the same form as a multivariate regression model
with predictors zα and responses dα.

From (12) the model for a functional response yα given
a functional predictor xα can be expressed as a probability
density function as follows:

f(yα|xα; θ) =
1

(2π)K/2|Σ|1/2

(13)

× exp
{
−1

2
(dα − BT zα)T Σ−1(dα − BT zα)

}
,

where θ = {B, Σ} is a parameter vector. Therefore, max-
imum likelihood estimators of B and Σ are, respectively,
given by

B̂ = (ZT Z)−1ZT D, Σ̂ =
1
n

(D − ZB̂)T (D − ZB̂).

Comparing this result with (8), we find that the maximum
likelihood estimator of B coincides with the least squares
estimator.

3.3. Maximum penalized likelihood method

Since least squares or maximum likelihood method often
results in unstable estimators, we consider estimating the
functional regression model, using the regularization method.
It follows from (13) that the penalized log-likelihood func-
tion is given by

lλ(θ) =
n∑

α=1

log f(yα|xα; θ)(14)

− n

2
tr

{
BT (ΛM ⊙ Ω)B

}
,

where ΛM is a (
∑

m Jm) × (
∑

m Jm) matrix of regulariza-
tion parameters λ1, . . . , λM that control a variation of B,
that is, ΛM = λMλT

M with λM = (
√

λ11T
J1

, . . . ,
√

λM1T
JM

)T .
The notation ⊙ represents the Hadamard product and Ω is
a (

∑
m Jm)×(

∑
m Jm) positive semi-definite matrix. Max-

imizing the function (14), maximum penalized likelihood
estimators B̂，Σ̂ are respectively given by

vec(B̂) =
(
Σ̂−1 ⊗ ZT Z + nIK ⊗ (ΛM ⊙ Ω)

)−1

(15)

× (Σ̂−1 ⊗ ZT )vec(D),

Σ̂ =
1
n

(D − ZB̂)T (D − ZB̂).

Since B̂ and Σ̂ depend on each other, we provide an ini-
tial value for the variance covariance matrix; then they are
updated until convergence. Therefore, the maximum pe-
nalized likelihood estimator of D is given by

vec(D̂) = vec(ZB̂)(16)
= Sλvec(D),

where Sλ = (IK⊗Z)(Σ̂−1⊗ZT Z+nIK⊗(ΛM⊙Ω))−1(Σ̂−1⊗
ZT ) is a hat matrix for vec(D). Substituting the maximum
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penalized likelihood estimator θ̂ = {B̂, Σ̂} into (13) we ob-
tain the statistical model

f(yα|xα; θ̂) =
1

(2π)K/2|Σ̂|1/2

× exp
{
−1

2
(dα − B̂T zα)T Σ̂−1(dα − B̂T zα)

}
.(17)

4. Model selection criteria

Since the statistical model (17) estimated by the regular-
ization method depends on the regularization parameters
λ1, . . . , λM , selection of these values is an important issue.
Although cross-validation is widely used for the regulariza-
tion parameter selection, the computational time is very
large and high variability and tendency to undersmooth
are not negligible in the analysis of functional data. We
derive model selection criteria for evaluating the functional
regression model. We select the model that minimizes the
values of these criteria and then consider the correspond-
ing model to be the optimal model. In Section 5 Monte
Carlo simulations are conducted to compare the proposed
criteria.

(1) Generalized cross validation
Generalized cross validation (GCV; Craven and Wahba,

1979) for evaluating the functional regression model (17) is
obtained by applying the hat matrix Sλ given in (16), that
is,

GCV =
tr

{
(D − ZB)T (D − ZB)

}
nK (1 − tr(Sλ)/(nK))2

.

(2) Modified AIC
Hastie and Tibshirani (1990) modified the AIC (Akaike,
1973) for evaluating the model estimated by the regular-
ization method by substituting a trace of the hat matrix
for the number of degrees of freedom, since the hat matrix
can be viewed as a measure of the complexity of the model
estimated by the regularization method. Using this result,
the modified AIC for evaluating (17) is given by

mAIC = −2
n∑

α=1

log f(yα|xα; θ̂) + 2tr(Sλ).

A problem may arise in the theoretical justification for the
use of the bias-correction terms in MAIC, since AIC covers
only models estimated by the maximum likelihood method.

(3) Generalized information criterion
Imoto and Konishi (2003) derived an information criterion
GIC (Konishi and Kitagawa, 1996) for evaluating a sta-
tistical model estimated by the maximum penalized like-
lihood method. Using this result, the GIC for evaluating
the model (17) is given by

GIC = −2
n∑

α=1

log f(yα|xα; θ̂) + 2tr{Rλ(θ̂)−1Qλ(θ̂)},

where Rλ(θ)，Qλ(θ) are, respectively, given by

Rλ(θ) = − 1
n

n∑
α=1

∂2

∂θ∂θT
{log f(yα|xα; θ)

− 1
2
tr

{
BT (ΛM ⊙ Ω)B

}}
,(18)

Qλ(θ) =
1
n

n∑
α=1

∂

∂θ
{log f(yα|xα; θ)

− 1
2
tr

{
BT (ΛM ⊙ Ω)B

}}
∂

∂θT
log f(yα|xα;θ).

(4) Generalized Bayesian information criterion
The Bayesian information criterion (BIC) has been pro-
posed by Schwarz (1978), from the viewpoint of Bayesian
inference, based on the idea of maximizing the posterior
probability of candidate models. However, the BIC only
covers models estimated by the maximum likelihood method.
Konishi et al. (2004) extended the BIC so that it could be
used for evaluating models fitted by the maximum penal-
ized likelihood method, thus deriving GBIC. We derive the
GBIC for evaluating the model (17) fitted by the maximum
penalized likelihood method, which is given by

GBIC = − 2
n∑

α=1

log f(yα|xα; θ̂) + ntr
{
BT (ΛM ⊙ Ω)B

}
+ (r + Kq) log n − (r + Kq) log(2π)(19)

− K log |ΛM ⊙ Ω|+ + log |Rλ(θ̂)|,

where q = p − rank(Ω), p =
∑

m Jm, r = K(K + 1)/2
and | · |+ denotes the product of the non-zero eigenvalues
of a matrix. The derivation of GBIC in (19) is given in
Appendix B.

5. Numerical examples

Monte Carlo simulations are conducted to investigate the
effectiveness of the proposed modeling strategy. We simu-
lated n sets of a functional predictor and a response {(xα(s),
yα(t)); s ∈ S, t ∈ T , α = 1, . . . , n}, then applied the func-
tional regression modeling. Data sets are generated in two
steps; First, xαi (i = 1, . . . , 50) corresponding to the pre-
dictor X at observational points si are generated by the
following rule:

xαi = uα(si) + εαi, εαi ∼ N(0, 1), si ∼ U(−1, 1).

We assume uα(s) as following settings:

(a) uα(s) = exp(a1αs) + a2αs,

a1α ∼ N(2, 0.22), a2α ∼ N(−3, 0.32),
(b) uα(s) = b1α + b2αs + b3αs2 + b4αs3,

b1α ∼ N(0.2, 0.12), b2α ∼ N(0.4, 0.22),
b3α ∼ N(0.1, 0.082), b4α ∼ N(0.4, 0.12).
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Table 1: Comparisons of the average mean squared errors
(AMSE) based on various criteria for the simulation (a).

n = 25 GCV mAIC GIC GBIC
ρ = 1.5 AMSE (×10−1) 2.418 3.032 2.638 2.301

SD (×10−1) 1.013 1.337 1.315 0.943
ρ = 1 AMSE (×10−1) 1.650 2.032 1.759 1.623

SD 7.267 9.804 8.299 7.260
ρ = 0.5 AMSE (×10−1) 1.153 1.324 1.183 1.121

SD 4.023 4.336 4.201 3.981
ρ = 0.1 AMSE 6.371 4.915 5.795 6.571

SD 2.216 1.284 1.807 2.225
n = 50 GCV mAIC GIC GBIC
ρ = 1.5 AMSE (×10−1) 1.391 1.428 1.561 1.368

SD 4.990 5.369 6.435 4.757
ρ = 1 AMSE (×10−1) 1.063 1.034 1.120 1.042

SD 3.545 3.659 4.024 3.553
ρ = 0.5 AMSE 8.337 7.540 7.659 8.248

SD 2.054 1.763 1.915 2.065
ρ = 0.1 AMSE 5.883 3.673 4.114 5.739

SD 1.562 1.102 1.575 1.354

Second, yαj (j = 1, . . . , 50) corresponding to the func-
tional response Y at design points tj are generated as fol-
lows:

yαj = vα(tj) + εαj , εαj ∼ N(0, 1), tj ∼ U(−1, 1),
vα(t) = gα(t) + εα(t),

gα(t) =
∫
S

uα(s)β(s, t)ds, εα(t) = eT
αψ(t),

where S = [−1, 1], ψ(t) are Gaussian basis functions and
the coefficients eα are assumed to be independently dis-
tributed according to multivariate normal distributions
N(0, Σ) with Σ = (0.5|k−l|ρ)k,l. The coefficient functions
β(s, t) are given by

(a) β(s, t) = s2 + t2, (b) β(s, t) = s + t3.

As a first step of the analysis, we converted xαi and
yαj into functional data xα(s) and yα(t) respectively by
the smoothing method. The number of basis functions
is supposed to be 10. Next, we constructed a functional
regression model and then estimated the model by the
maximum penalized likelihood method. Maximum like-
lihood failed to provide estimates in these cases because
of the degeneracy. In order to compare the effectiveness
of our modeling procedures, four model selection crite-
ria, GCV, mAIC, GIC and GBIC, are used for evaluating
the estimated model. We repeated this strategy for 100
times, then derived 100 averages of mean squared errors
AMSE =

∑
α

∑
i(gα(ti) − ŷα(ti))2/n.

Table 1 and 2 show results of simulation examples, where
bold numbers indicate the minimum AMSEs among four
criteria. The values of SD indicate standard deviations
for the AMSE. It may be seen from these tables that the

Table 2: Comparisons of the average mean squared errors
(AMSE) based on various criteria for the simulation (b).

n = 25 GCV mAIC GIC GBIC
ρ = 1.5 AMSE (×10−1) 2.110 2.812 2.192 1.955

SD (×10−1) 1.123 1.516 1.039 0.957
ρ = 1 AMSE (×10−1) 1.409 1.803 1.671 1.337

SD 6.119 9.208 9.821 5.554
ρ = 0.5 AMSE (×10−1) 0.868 1.095 0.973 0.826

SD 3.695 5.043 4.279 3.393
ρ = 0.1 AMSE 2.732 3.427 2.908 2.637

SD (×101) 8.043 11.08 9.357 6.572
n = 50 GCV mAIC GIC GBIC
ρ = 1.5 AMSE (×10−1) 1.019 1.047 1.271 0.985

SD 4.572 4.375 6.102 4.087
ρ = 1 AMSE 7.403 7.858 9.945 7.303

SD 2.927 3.193 3.750 2.802
ρ = 0.5 AMSE 4.573 4.634 5.443 4.408

SD 1.543 1.531 1.826 1.405
ρ = 0.1 AMSE 2.074 2.098 2.194 2.045

SD (×101) 4.654 4.992 5.105 4.439

models evaluated by GBIC are superior to those evaluated
by other model selection criteria in most situations in the
sense of minimizing AMSEs, especially when the variance
parameter ρ is large.

6. Real data example

In this section we apply the proposed functional regression
modeling strategy to the analysis of Japanese weather data,
predicting the variation of monthly precipitation.

Weather data, available on Chronological Scientific Ta-
bles 2005, are recorded from January to December at 79
weather stations in Japan, including the annual monthly
average temperature, monthly total times of daylight and
monthly total precipitation. These data are averaged over
the values obtained from 1971 to 2000. We consider pre-
dicting monthly total precipitation using the temperature
and times of daylight. For daylight and precipitation data
we used the logarithms of observed data.

We performed some pre-processings before applying func-
tional regression modeling. First, we obtained functional
data sets by smoothing the data via regularized Gaussian
basis function expansion. The resulting functional data
sets are shown in Figure 1. Next, the 79 observed data
sets were randomly divided into 45 training data sets and
34 test data sets. The training data were centered by sub-
tracting the sample average. We treated temperature and
daylight functions as predictors and the precipitation func-
tion as a response, thereby constructing a functional re-
gression model.

The model was estimated by the maximum likelihood
and maximum penalized likelihood method; four model se-
lection criteria were then used to evaluate the model for
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Figure 1: Examples of weather data converted into func-
tions.

Table 3: Results on the analysis of weather data. λ1 and
λ2 are regularization parameters selected by each model
selection criterion.

MLE GCV mAIC GIC GBIC
λ1 (×102) — 2.51 3.98 5.01 89.1
λ2 (×101) — 1.26 1.78 1.78 8.91

Test error (×102) 7.25 5.98 5.90 5.83 5.37

maximum penalized likelihood estimates. We used the av-
erage squared errors between the smoothed test data and
the predicted functional data at 100 time points as the test
error.

Table 3 shows regularization parameters for temperature
(λ1) and daylight (λ2) selected by each model selection cri-
terion and test errors of corresponding models. From these
results we observe that the maximum penalized likelihood
method is superior to the maximum likelihood method in
prediction accuracy. In particular, for the four model se-
lection criteria, GBIC minimized the test error.

Figure 3 shows the results of fitting eight weather sta-
tions with the test set. These figures reveal that the pre-
dicted functions captured the original data well. The es-
timated coefficient functions of each predictor are shown
in Figure 2. This figure shows that while the temperature
around January and the times of daylight around October
have negative weights, the temperature at the end of the
year and the times of daylight around March have a pos-
itive weight for predicting the precipitation. Therefore, if
the former values increase the precipitation decreases, and
if the latter values increase the precipitation increases.

7. Summary and concluding remarks

We proposed a functional regression modeling with func-
tional predictors and a functional response, using Gaussian
basis functions along with the technique of regularization.
First discretely observed data for individuals were trans-
formed to a set of smooth functions. Second the functional
regression model was constructed, using the method of reg-
ularization and also the property that the integral of the
product of any two Gaussian basis functions can be directly
calculated. We applied the proposed modeling strategy to
the analysis of weather data, predicting response functions
rather than scalars. The simulation results and the analysis
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Figure 2: Estimated coefficient functions corresponding to
temperature (top) and daylight (bottom).
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Figure 3: Results on fitting the test data for 8 stations.
Solid lines show smoothed test data and dashed lines show
the predicted functions by the functional regression model.
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of real data showed that our modeling procedure performs
well, especially in terms of its flexibility and stability.

Recently electronic measurement technologies enable us
to collect large amounts of various types of data in the fields
of natural science. In order to extract useful information
from such data with complex structure, nonlinear model-
ing techniques are required. Further work remains to be
done towards constructing nonlinear functional regression
modeling.
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Appendix

A. Converting discrete data to functional data

Since data are generally obtained discretely, we need to ex-
plain these data as functions. We use a smoothing method
via regularized basis expansions for converting raw data
into functional data. In this section we only refer to the
predictor, however, same is true of the response.

Suppose we have n observations x1, . . . , xn, where each
xα are vectors of Nα observations {xα1, . . . , xαNα ; α =
1, . . . , n} at {sα1, . . . , sαNα ; sαi ∈ S, i = 1, . . . , Nα}, where
S ⊂ R is a range of design points sα1, . . . , sαNα . It is
assumed that xαis are given by adding Gaussian noises εαi

to unknown smooth functions uα(s) at sαi, that is,

xαi = uα(sαi) + εαi, i = 1, . . . , Nα,(20)

where εαi are independently normally distributed with mean
0 and variance σ2

xα.
Nonlinear functions uα(s) are supposed to be represented

by the basis expansion such as

uα(s) =
J∑

j=1

cαjϕj(s) = cT
αϕ(s),(21)

where cα = (cα1, . . . , cαJ)T are vectors of coefficient pa-
rameters and ϕ(s) = (ϕ1(s), . . . , ϕJ(s))T are vectors of
basis functions. We assume that basis functions ϕj(s) (j =
1, . . . , J) are Gaussian basis functions defined in (2). From
these results the regression model (20) has a probability
density function

f(xαi|sαi; cα, σ2
xα) =

1√
2πσ2

xα

exp
{
− (xαi − cT

αϕ(sαi))2

2σ2
xα

}
.

The parameters cα and σ2
xα are estimated by using the

maximum penalized likelihood method, which maximizes a
penalized log-likelihood function

lζα(cα, σ2
xα) =

Nα∑
i=1

log f(xαi|sαi; cα, σ2
xα) − Nαζα

2
cT

αΩcα,

where ζα are smoothing parameters which adjust the smooth-
ness of the estimated function, and Ω is a J × J positive
semi-definite matrix. The maximum penalized likelihood
estimators ĉα and σ̂2

xα are, respectively, given by

ĉα = (ΦT
αΦα + Nαζασ̂2

xαΩ)−1ΦT
αxα,(22)

σ̂2
xα =

1
Nα

(xα − Φαĉα)T (xα − Φαĉα),

where Φα = (ϕ(sα1), . . . , ϕ(sαNα))T .
The maximum penalized likelihood estimates based on

Gaussian basis functions depend on the regularization pa-
rameters ζα and the number of basis functions J . For the
choice of these parameters some model selection criteria are
used. Details are referred to Konishi and Kitagawa (2008).
Selecting appropriate values of ζα and J , leading to ap-
propriate estimates ûα(s). Therefore we obtain functional
data

xα(s) ≡ ûα(s) = ĉT
αϕ(s).(23)

We use a set of functions {xα(s); s ∈ S, α = 1, . . . , n} as
data instead of observed data set {(sαi, xαi); i = 1, . . . , Nα,
α = 1, . . . , n}.

B. Derivation of GBIC

We show the derivation of the model selection criterion
GBIC in (19) for evaluating the functional regression model
estimated by the regularization method.

The penalized log-likelihood function (14) is rewritten as

lΛ(B, Σ) = log
{

f(y|θ) exp
[
−n

2
tr{BT (ΛM ⊙ Ω)B}

]}
= log

{
f(y|θ)

K∏
k=1

exp
[
−n

2
bT
(k)(ΛM ⊙ Ω)b(k)

]}
,(24)

where log f(y|θ) =
∑

α log f(yα|xα; θ). We set the prior
density of θ as a product of K multivariate normal distri-
bution, that is,

π(θ|ΛM ) =
K∏

k=1

n(p−q)/2|ΛM ⊙ Ω|1/2
+

(2π)(p−q)/2

× exp
[
−n

2
bT
(k)(ΛM ⊙ Ω)b(k)

]
.(25)

Then the marginal likelihood of y given θ with prior dis-
tribution (25) can be expressed as

p(y|ΛM ) =
∫

f(y|θ)π(θ|ΛM )dθ(26)

=
∫

exp
[
n × 1

n
log{f(y|θ)π(θ|ΛM )}

]
dθ

=
∫

exp {nq(θ|ΛM )} dθ,

where q(θ|ΛM ) = log{f(y|θ)π(θ|ΛM )}/n.
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A Taylor series expansion of q(θ|ΛM ) around θ̂, the max-
imum penalized likelihood estimator of θ, is given by

(27)

q(θ|ΛM ) = q(θ̂|ΛM ) − 1
2
(θ − θ̂)T Rλ(θ̂)(θ − θ̂) + · · ·

since ∂q(θ̂|ΛM )/∂θ = 0. Substituting (27) into (26), we
obtain the following Laplace approximation

∫
exp {nq(θ|ΛM )} dθ

(28)

=
∫

exp
[
n

{
q(θ̂|ΛM ) − 1

2
(θ − θ̂)T Rλ(θ̂)(θ − θ̂) + · · ·

}]
dθ

≈ exp
{

nq(θ̂|ΛM )
} ∫

exp
{
−n

2
(θ − θ̂)T Rλ(θ̂)(θ − θ̂)

}
dθ

=
(2π)(r+Kp)/2

n(r+Kp)/2|Rλ(θ̂)|1/2
exp

{
nq(θ̂|ΛM )

}
.

Therefore, the GBIC evaluating the multivariate func-
tional regression model estimated by the maximum penal-
ized likelihood method is given by

− 2 log p(y|ΛM )(29)

= −2 log
{∫

f(y|θ)π(θ|ΛM )dθ

}
≈ −2

n∑
α=1

f(yα|xα; θ̂) + ntr{B̂T (ΛM ⊙ Ω)B̂}

+ (r + Kq) log n − (r + Kq) log(2π)

−
K∑

k=1

log |ΛM ⊙ Ω|+ + log |Rλ(θ̂)|.
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