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Abstract. This article surveys recent results and open questions on high-discrepancy sequences.
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1. Introduction

First, we introduce the definition of discrepancy [7, 14].
For a point set PN = {X0, X1, . . . , XN−1} of N points in
[0, 1]d and an interval J ⊆ [0, 1]d, we define AN (J) as the
number of n, 0 ≤ n ≤ N − 1, with Xn ∈ J and µ(J) is the
volume of J . Then the discrepancy of PN is defined by

Dd(PN ) = sup
J

∣∣∣∣AN (J)

N
− µ(J)

∣∣∣∣ ,
where the supremum is taken over all intervals J of the
form

J =
d∏

i=1

[αi, βi), for 0 ≤ αi < βi ≤ 1. (1)

The uniform distribution of an infinite sequence
X0, X1, . . . ∈ [0, 1]d is defined as follows [7, 14]: If an infi-
nite sequence of points Xn, n = 0, 1, . . . , in [0, 1]d satisfies
that for any interval J in (1),

lim
N→∞

AN (J)

N
= µ(J),

then we say that the sequence is uniformly distributed in
[0, 1]d. It is known that a sequence is uniformly distributed
if and only if limN→∞ Dd(PN ) = 0. An important appli-
cation of uniformly distributed sequences is numerical in-
tegration due to the well-known Koksma-Hlawka theorem,
which is given as∣∣∣∣∣

∫
[0,1]d

f(x)dx− 1

N

N−1∑
n=0

f(Xn)

∣∣∣∣∣ ≤ Dd(PN )V (f),

where V (f) is the variation of the function f(x) in the
sense of Hardy and Krause [7, 8, 13, 20]. Also it is known
[5] that the integral of any Riemann integrable function is
equal to the limit of the arithmetic mean of function values
at sample points if and only if the sequence of sample points
is uniformly distributed.
High-discrepancy sequences are defined as those se-

quences which are not uniformly distributed, in other

words, the discrepancy Dd(PN ) does not converge to zero
as N goes to infinity. In this survey, we focus on a sequence
of points in [0, 1]d (d ≥ 2) which are distributed only on the
diagonal line between (0, . . . , 0) and (1, . . . , 1). It is obvi-
ous that such a sequence is far from uniformly distributed,
namely a high-discrepancy sequence. In the case of high
discrepancy sequences, the Koksma-Hlawka theorem is of
no use because the discrepancy Dd(PN ) does not converge
to zero. In this article, however, we show that there are
several classes of functions for which the fast convergence
of numerical integration can be guaranteed by the use of
high-discrepancy sequences.

2. High-discrepancy sequences on the
diagonal line

In this section, we discuss two cases. The first case is that
a sequence of points are uniformly distributed on the di-
agonal line between (0, . . . , 0) and (1, . . . , 1). Secondly, we
consider the non-uniform case.

2.1. uniform case

First, we need recall some necessary definitions from the
net theory [2, 7, 14]. An elementary interval in base b (b ≥
2) is a subinterval of [0, 1]d of the form

E =

d∏
i=1

[
aib

−ki , (ai + 1)b−ki), (0 ≤ ai < bki , ki ≥ 0).

A (t,m, d)-net in base b is a point set of bm points in [0, 1]d

such that A(E, bm) = bt for every elementary interval E in
base b, with V (E) = bt−m (0 ≤ t ≤ m). A (t, d)-sequence
in base b is an infinite sequence, X = (Xn)n≥0, of points
in [0, 1]d such that for all h ≥ 0 and m > t, the point set
{[Xhbm ]b,m, . . . , [X(h+1)bm−1]b,m} is a (t,m, d)-net, where
[Xn]b,m denotes the coordinate-wise b-ary m-digit trunca-
tion of a point Xn.
The practical construction of (t,m, d)-nets and (t, d)-

sequences is based on the so-called generator matrices over
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GF (b), where the base b is assumed to be a prime power
(for more detail of their definition and relevant informa-
tion, see [2, 7, 14]). Hereafter, we denote by Sd a class
of (t, d)-sequences in base two whose generator matrices
are nonsingular and lower-triangular. Note that this class
includes high-discrepancy sequences uniformly distributed
on the diagonal line between (0, . . . , 0) and (1, . . . , 1) which
corresponds to (t, d)-sequences in base two whose generator
matrices are all identical.
The Walsh functions are defined by

wal(0, x) = 1, for x ∈ [0, 1),

and for an integer k ≥ 1,

wal(k, x) = (−1)
∑∞

j=1 bj−1aj = (−1)(k,X)

where k = b0 + b12 + · · · , and x = a12
−1 + a22

−2 + · · ·
in the binary expansion, and k = (b0, b1, . . . ) and X =
(a1, a2, . . . ) are the binary vector representation of k and
x, respectively. Then, we have the following theorem [16]:

Theorem 1. An L2 function on [0, 1]d can be written as

f(x1, . . . , xd) =
∑

k1,...,kd≥0

ck1,...,kd
wal(k1, x1) · · ·wal(kd, xd).

We have

I(f) :=

∫
[0,1]d

f(x1, . . . , xd)dx1 · · · dxd

= 2d−1
(∫

[0, 12 ]
d

f(x1, . . . , xd)dx1 · · · dxd

+

∫
[ 12 ,1]

d

f(x1, . . . , xd)dx1 · · · dxd

)
−∆d,

where
∆d =

∑
0≤k1,...,kd≤1

(k1,...,kd) ̸=(0,...,0)

k1+···+kd=0 (mod 2)

ck1,...,kd
.

We now consider a class of functions for which ∆d = 0.
First, we give some definitions.

Definition 1. Let m ≥ 1 be an integer and let u be a
nonempty subset {j1, . . . , j|u|} ⊆ {1, . . . , d}. We define

ϕu,m(x1, . . . , xd) =

|u|∏
i=1

wal(k
(m)
ji

, xji),

for 2m−1 ≤ k
(m)
j1

, . . . , k
(m)
j|u|

< 2m.

Definition 2. A function class Fd consists of functions

f(x1, . . . , xd) = c0 +
∑

1≤|u|≤d
|u| is odd

∞∑
m=1

cu,mϕu,m(x1, . . . , xd),

where c0 and cu,m, m = 1, 2, . . . , are constants satisfying

|c0|+
∑

1≤|u|≤d
|u| is odd

∞∑
m=1

|cu,m|2m−1 ≤ M < ∞.

Here, M is a constant.

We have the following results [15, 16]:

Theorem 2. For any function f(x1, . . . , xd) in Fd, we
have ∆d = 0.

Theorem 3. For any sequence Xn, n = 0, 1, . . . , in the
class Sd, the integration error eN of any function f in Fd

is given by

eN (Xn, f) :=

∣∣∣∣∣I(f)− 1

N

N−1∑
n=0

f(Xn)

∣∣∣∣∣
<

1

N

∑
1≤|u|≤d
|u| is odd

∞∑
m=1

|cu,m|min(2m−1, N)

<
M

N
,

where the last inequality follows from Definition 2.

An important consequence from the above result is that
the “low-discrepancy” approach is not the only way for ac-
celerating the computation of high dimensional numerical
integration. If one considers a class of functions for which
the uniform distribution is not a necessary condition for
the integral of any function in the class to be equal to the
limit of the arithmetic mean of function values, there is a
possibility to develop faster algorithms based on the “high-
discrepancy” approach than simple Monte Carlo and/or
“low-discrepancy” methods.

2.1.1. Owen’s scrambling

Owen’s scrambling scheme is described as follows [9, 10]:
Let b ≥ 2 be an integer. Assume that σ is a mapping
from the interval [0, 1) onto itself. A b-ary scrambling is
a mapping σ from the b-ary representation of A ∈ [0, 1)
to the b-ary representation of σ(A) ∈ [0, 1) determined in
the following way: Let A = a1b

−1 + a2b
−2 + · · · , where

a1, a2, . . . are in {0, 1, . . . , b− 1}. Then the first b-ary digit
of σ(A) is π(a1), where π is a fixed permutation of the
set {0, 1, . . . , b − 1}. Next, for each possible value of a1,
we fix a permutation πa1 of {0, 1, . . . , b − 1}, and define
the second b-ary digit as πa1(a2). We can continue with
the definitions of the third digit, fourth digit, and so on,
in the same way, and obtain πa1,a2(a3), πa1,a2,a3(a4), . . . .
In this scrambling scheme, each permutation is uniformly
distributed over the b! possible permutations and the per-
mutations are mutually independent. In d dimensions, we
consider an d-tuple of b-ary scramblings (σ1, . . . , σd). Owen
showed that if σ1, . . . , σd are chosen as fully random and
mutually independent, then the d-dimensional scrambling
preserves the t-values of (t,m, d)-nets and (t, d)-sequences.

Owen also analyzed the variance of the integration er-
ror for his scrambling. His formula for the variance of
the integration error holds for any L2 function on [0, 1]d.
We need recall the definition of gain coefficients Γu,κ in-
troduced in [10]. Denote a set of N points in [0, 1)d by

Xn = (X
(1)
n , . . . , X

(d)
n ), n = 0, . . . , N − 1. The gain coeffi-
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cient is defined by

Γu,κ =
1

N(b− 1)|u|

N−1∑
n=0

N−1∑
n′=0∏

i∈u

(
b1⌊bki+1X

(i)
n ⌋=⌊bki+1X

(i)

n′ ⌋
− 1⌊bkiX

(i)
n ⌋=⌊bkiX

(i)

n′ ⌋

)
,

where κ = (k1, . . . , kd). Then, we have the following for-
mula for the variance of the integration error in terms of
Owen’s scrambling:

V(f ;N ;Xn) = E

( 1

N

N−1∑
n=0

f(Xn)− I(f)

)2


=
1

N

∑
u̸=∅

∑
κ

Γu,κσ
2
u,κ,

where σ2
u,κ is the variance of the step function, which

is defined from the b-ary Haar wavelet expansion of
f(x1, . . . , xd) (for the detail, see [9, 10]). We should note
that the variance for simple Monte Carlo methods with N
samples is

σ2(f)

N
=

1

N

∑
u̸=∅

∑
κ

σ2
u,κ. (2)

Now, we consider an application of Owen’s scrambling
to d-dimensional high-discrepancy points which consist of
d copies of a (0,m, 1)-net in base b, that is to say, all d
coordinates of the point set are identical to a (0,m, 1)-net in
base b. As we said before, for some class of functions “low-
discrepancy” is not a necessary condition for the speed-up
of their numerical integration. We proved the following
theorem [17]:

Theorem 4. Denote kmax = maxi∈u ki, and denote by
h(u, κ) the number of i such that ki = kmax. For Owen’s
scrambling of high-discrepancy points, which consist of d
copies of a (0,m, 1)-net in base b, if kmax < m, then the
gain coefficient is given by

Γu,κ = bℓ(u,κ)
(
1− 1

(1− b)h(u,κ)−1

)
, (3)

where ℓ(u, κ) = m − kmax − 1, and if kmax ≥ m, then
Γu,κ = 1.

In the particular case of b = 2, the equation (3) becomes
much simpler, i.e,

Γu,κ =

{
0 if h(u, κ) is odd,

2ℓ(u,κ)+1 otherwise.

By taking into account the equation (2), we obtain
a necessary and sufficient condition for scrambled high-
discrepancy points to have smaller variance than simple
Monte Carlo methods as follows:

Corollary 1. For the integration of a L2 function on
[0, 1]d, scrambled high-discrepancy points in base b have

smaller variance than simple Monte Carlo methods if and
only if

∑
u̸=∅

∑
κ

(
bℓ(u,κ)

(
1− 1

(1− b)h(u,κ)−1

)
− 1

)
σ2
u,κ < 0, (4)

where the number of samples is N = bm.

In the particular case of b = 2, the inequality (4) becomes
much simpler, i.e,∑

u̸=∅

∑
κe

(
2ℓ(u,κe)+1 − 1

)
σ2
u,κe

<
∑
u̸=∅

∑
κo

σ2
u,κo

,

where the number of samples isN = 2m and κe or κo is such
κ that h(u, κ) is even or odd, respectively. Interestingly
enough, for the class of functions Fd in Definition 2, we
have σu,κe = 0 for all u and κe and σu,κo ̸= 0 for some u
and κo, in other words, scrambled high-discrepancy points
in base two give smaller variance than simple Monte Carlo
methods.

2.2. non-uniform case

Kolmogorov superposition theorem tells us that for any in-
teger d ≥ 1, any continuous function f(x1, . . . , xd) on [0, 1]d

can be represented as a superposition of one-dimensional
functions, i.e.,

f(x1, . . . , xd) =
2d∑
q=0

gq

(
d∑

i=1

aiΨq(xi)

)
, (5)

where gq(x), q = 0, 1, . . . , 2d, are continuous functions de-
termined depending on f(x1, . . . , xd), and ai, i = 1, . . . , d

are constants with
∑d

i=1 ai = 1, determined independently
of f(x1, . . . , xd). And Ψq(x), q = 0, 1, . . . , 2d, are monotone
increasing and continuous function on [0, 1], determined in-
dependently of f(x1, . . . , xd). How to construct these func-
tions and constants can be found in [1], which also includes
more detail and latest information on this theorem.
Based on this theorem, we introduced a Kolmogorov su-

perposition integral as follows [18]:

Definition 3. A Kolmogorov superposition integral is de-
fined by

Id(g; Ψ) :=

∫
[0,1]d

g

(
d∑

i=1

aiΨ(xi)

)
dx1 · · · dxd,

where Ψ(x) is any monotone increasing function on [0, 1]
which is continuous in (0, 1), and a1, . . . , ad are constants

with
∑d

i=1 ai = 1. And g(x) is any continuous function
such that |Id(g; Ψ)| < ∞. We remark that Ψ(x) can be
±∞ at the ends of the unit interval [0, 1].

A practical example of Kolmogorov superposition inte-
gral is given below.

Example 1. According to Papageorgiou [12], many fi-
nance problems can be written as Kolmogorov superpo-
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sition integrals with

g(x) = max(a exp(bx)−K, 0),

Ψ(x) = ϕ−1(x),

a1 = · · · = ad = 1/d,

where a and b are appropriate constants.

We also introduced a Kolmogorov superposition high-
discrepancy sequence [18].

Definition 4. A Kolmogorov superposition high-
discrepancy sequence is defined as a sequence of points

Xn = (sn, . . . , sn) ∈ [0, 1]d, n = 0, 1, 2, . . . ,

with sn = Ψ−1(p−1(vn)), where p(x) is the distribution

function corresponding to
∑d

i=1 aiΨ(xi), and vn, n =
0, 1, 2, . . . , is a one-dimensional low-discrepancy sequence.

The function p(x) can be obtained either by repeatedly
calculating the convolution of Ψ(x) or by using the prod-
ucts of the characteristic function of the probability dis-
tribution function Ψ(x). As the definition makes clear,
Kolmogorov superposition high-discrepancy sequences are
distributed only on the diagonal line between (0, . . . , 0) and
(1, . . . , 1). We should note that the sequence is constructed
independently of g(x), the integrand of Kolmogorov super-
position integrals. On the integration error, we obtained
the following theorem [11, 18]:

Theorem 5. Denote ρ(x) = g(p−1(x)). For a Kolmogorov
superposition integral, if the function ρ(x) is of bounded
variation, then the error of the numerical integration us-
ing a Kolmogorov superposition high-discrepancy sequence
is given by O((logN)/N), where N is the number of points.

We remark that the function ρ(x) associated with the
integral described in Example 1 is not of bounded varia-
tion. However, the results of Papageorgiou [12] imply that
the integration error for the high-discrepancy sequence is
O(N−1+o(1)), where the asymptotic constant is indepen-
dent of d.

2.2.1. Software Implementation

We give the software implementation of Kolmogorov super-
position high-discrepancy sequences (KS-HDS) as follows:

[Preprocessing] By using the parameters, d, p(x), and
Ψ(x), compute KS-HDS as

Xn = (sn, . . . , sn) ∈ [0, 1]d, n = 0, 1, 2, . . . ,

with sn = Ψ−1(p−1(vn)), where vn, n = 0, 1, 2, . . . , is the
van der Corput sequence. Then store it in the memory.

[Main processing] Once the integrand g(x) is given, call
N points of the KS-HDS from the memory, and compute

1

N

N−1∑
n=0

g(Ψ(sn))

as an approximation to the integral.

3. Discussions

As in the Braun-Griebel implementation of Kolmogorov
superposition theorem [1], when the dimension d goes to
infinity, all the functions Ψq(x), q = 0, 1, . . . , 2d, become
identical to Ψ0(x). Therefore, we can use the same high-
discrepancy sequence for all gq(x), q = 0, 1, . . . , 2d in
(5). Namely, the integration of any continuous function
f(x1, . . . , xd) over [0, 1]

d,

I(f) =
2d∑
q=0

Id(gq; Ψq) ≈
2d∑
q=0

Id(gq; Ψ0)

can be computed by using the high-discrepancy sequence,
X0, X1, . . . , described in Definition 4 with Ψ0(x) provided
that the dimension is large enough. We point out that
in this case it is not necessary to know the decomposi-
tions gq(x), q = 0, 1, . . . , 2d, explicitly, because we can
apply the sequence, X0, X1, . . . , directly to the function
f(x1, . . . , xd), that is to say,

I(f) =

∫
[0,1]d

f(x1, . . . , xd)dx1 · · · dxd ≈ 1

N

N−1∑
n=0

f(Xn).

This fact can be regarded as the blessing of dimensionality
discussed by Donoho [3]. However, it is open to determine
how large the dimension should be to replace the Ψq(x),
q = 0, 1, . . . , 2d, by a single function.

The optimal discrepancy is defined as follows:

Dopt
d,N = inf

PN

Dd(PN ),

where the infimum is taken over all sets of N points in
[0, 1]d. Hinrichs [4] proved the following lower bound:

Dopt
d,N ≥ min(ϵ, cd/N),

where 0 < c < 1 and ϵ > 0 are absolute constants. We
stress that under the constraint N ≤ d, the discrepancy
Dopt

d,N never converges to zero as N goes to infinity. This
implies that under the constraint N ≤ d, a sequence of
points can not be uniformly distributed in [0, 1]d, in other
words, it becomes a high-discrepancy sequence.

Thus, we now present the following conjecture:

Conjecture 1. For any N ≥ 2 and d ≥ N , there exists a
set of N points on the diagonal line between (0, . . . , 0) and
(1, . . . , 1) in [0, 1]d such that its discrepancy is optimal.

At present, the conjecture was confirmed only for the
case N = 2 with any d ≥ 2 [6, 19]. It is interesting to
prove or disprove it for general case N ≥ 3 and d ≥ N .
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