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Abstract. In previous works, the author introduced metric spaces of term structure models to
study the relation between the LIBOR market model and the HJM model. However that framework
is not comprehensive, nor does it admit an extendable structure.
This paper introduces a new metric space to better develop the perspective argument. A metric
space is naturally constructed on the set of bond price processes such that the space allows many
types of term structure models. This metric presents a general view on the relation between the
LIBOR market model and the HJM model. Consequently, the LIBOR market model is placed at
the boundary of the HJM model set.
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1. Introduction

There are two streams of thought related to the term struc-
tures of interest rate modeling. One is the framework
of Heath et al. [4] (hereafter HJM), which is based on
arbitrage-free dynamics of the instantaneous forward rates.
Another, called the LIBOR market model, is based on for-
ward LIBOR rates, and has been studied by Miltersen et
al. [7], Brace et al. [1] (hereafter BGM), Jamshidian [6]
and Musiela and Rutkowski [8]. This model is most pop-
ular among practitioners, because it admits caplet formu-
las and swaption approximation formulas. However the
BGM model requires smoothness of volatility, because it is
constructed within the framework of HJM. On the other
hand, [8] and [6] construct models similar to BGM in a
general manner, based on the discrete family of bond price
processes without use of the instantaneous forward rate.
Then this discrete framework is not based on the HJM
framework, nor does it require volatility smoothness.
With respect to the volatility smoothness, the author’s

previous work (Yasuoka [10]) shows that even if BGM
model volatility does not satisfy smoothness, the corre-
sponding LIBOR process is arbitrarily approximated by
the BGM model with smooth volatility. [10] considered
the space of volatilities to explain topologically the rela-
tion between the BGM model with smooth volatility and
that without smoothness. A metric was furthermore intro-
duced on this volatility space. In this setting, [10] shows
that the BGM model without smoothness is situated on
the boundary of the set of the BGM model with smooth-
ness. However this volatility space involves only the BGM
model, and the definition of the metric is slightly ambigu-
ous. This investigation should therefore be reconstructed
more comprehensively.

The aim of this paper is to generalize the argument pre-
sented in [10]. Section 2 constructs another space, one that
includes many types of term structure model, including the
HJM model and the discrete family of bonds. Another met-
ric is also introduced on this space, one that is simpler than
the previous one.

In Section 3, we briefly introduce the term structure
models, HJM, BGM, and the LIBOR market model. To
avoid confusion, the BGM model with smoothness is clas-
sified into the HJM model. In a strict sense, the LIBOR
market model is referenced as a model introduced by [8]
and [6], which is not based on the HJM framework. Hence
the BGM model without smoothness is classified into the
LIBOR market model.

Finally, we shall show that the LIBOR market model
(or the BGM model without smoothness) is placed at the
boundary1 of the HJM model set. As a result, the new
metric presents a perspective view on the relation among
term structure models.

2. Metric space of bond price processes

Let δ > 0 be a positive constant, and a positive integer
n be fixed. A sequence of time {Ti} is defined as Ti =
δi, i = 1, 2, . . . , n. Furthermore let (Ω,F ,P, {Ft}t∈[0,Tn])
be a filtered probability space, where {Ft}t∈[0,Tn] is the
augmented filtration, and P is called the original measure
(or the real-world measure). We set

J = {(i, j) ∈ N2 : 0 ≤ i, j ≤ n, i ≤ j},
K = {(i, k) ∈ N2 : 0 ≤ i, k ≤ n, i+ k ≤ n}.

1cf. the footnote in Section 4.
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Let P (t, T ) be an Ft-adapted process, sometimes denoted
by P for simplicity. X denotes a set of P (t, T ) defined by

X =

{
P (t, T ) : max

(i,j)∈J
E[P (Ti, Tj)

2] < ∞
}
,

where E[ ] denotes the expectation under P.
We introduce an equivalence relation R on X as follows.

For P1 and P2 in X , P1 is said to be equivalent to P2 if and
only if it holds that

P1(Ti, Tj) = P2(Ti.Tj) a.s.P

for all (i, j) ∈ J . The quotient space X/R is denoted by Y.
Without loss of generality, we may consider that P always
expresses the equivalence class with respect to this relation.
Accordingly, a metric on Y is defined by

d(P1, P2) = max
(i,j)∈J

{
E[(P1(Ti, Tj)− P2(Ti, Tj))

2]
}1/2

(1)

for P1, P2 ∈ Y. Obviously, Y is a complete metric space2.
Furthermore, for a measure Q equivalent to P, XQ and YQ
are similarly defined as above. Naturally, XQ is not always
equivalent to X , nor YQ to Y.
Next, let B = (B1(t), . . . , Bn(t)) be a discrete family of

adapted processes such that

max
(i,j)∈J

E[Bj(Ti)
2] < ∞.

Consider P (t, T ) in Y such that it satisfies

P (t, Tj) = Bj(t)

for all j and t ≥ 0. P (t, T ) is uniquely determined in
the quotient space Y. Identifying B with P (t, T ), we may
consider that B ∈ Y.
We are interested in the case where P (t, T ) is a bond

price process with maturity T . Usually, the expiry date of
LIBOR and swap derivatives is set at some maturity Ti. We
denote LIBOR observed at Ti over the period [Ti+l, Ti+l+1]
by L(Ti, Tl), which is given by

1 + δL(Ti, Tl) =
P (Ti, Ti+l+1)

P (Ti, Ti+l)

for l = 0, . . . , n− i−1. The swap rate at Ti is expressed by
a function of L(Ti, Tl), and then expressed by a function of
P (Ti, Ti+l). Then the prices of LIBOR and swap deriva-
tives are generally determined by P (Ti, Tj), j ≤ i, that is,
any interpolation of P (Ti, Tj) does not affect the derivative
price3. Hence, the quotient space Y is well-defined in the
sense of derivative pricing. Note that the difference with Y
from the previous space defined in [10] is remarked upon
at the end of the next section.
Particularly, for a bond price process P (t, T ) and a mea-

sure Q, if there exists a numeraire asset whose price is
denoted by N(t) such that P (t, T )/N(t) is a Q-martingale,

2Here “complete” is used in the topological sense, not in the fi-
nancial sense.

3This view was originally introduced in [6].

then P (t, T ) is arbitrage-free. Regarding P (t, T ) as an ele-
ment in YQ, we denote the set of all arbitrage-free bond
price processes by NQ. For a discrete family of bond
price processes B = (B1(t), . . . , Bn(t)), if there exists a
numeraire N(t) such that Bi(t)/N(t), i = 1, . . . , n are Q-
martingales, B is arbitrage-free. In this case, we may con-
sider that B is an element in NQ.

3. Term structure within the HJM
framework

First we introduce the framework of the HJM model.
f(t, T ) denotes the instantaneous forward rate (hereinafter,
the forward rate) with maturity T ≤ Tn prevailing at time
t ≤ T . The dynamics of f(t, T ) are assumed to be ex-
pressed by

df(t, T ) = α(t, T ) dt+ σ(t, T ) · dZt, (2)

where Zt is an Rd-valued Brownian motion on
(Ω,F ,P, {Ft}t∈[0,Tn]) (hereinafter, P Brownian motion),

and α(t, T ) and σ(t, T ) are Rd-valued adapted processes.
The instantaneous spot rate (hereinafter, the spot rate) is
given by

s(t) = f(t, t).

There exists a measure Q equivalent to P such that f(t, T )
is described by

df(t, T ) =

(
σ(t, T ) ·

∫ T

t

σ(t, u) du

)
dt+ σ(t, T ) · dWt, (3)

where Wt is an Rd-valued Q Brownian motion. P (t, T )
denotes the price of the zero-coupon bond at time t with
maturity T ,

P (t, T ) = exp

{
−
∫ T

t

f(t, u) du

}
.

The savings account β(t) is defined by

β(t) = exp

{∫ t

0

s(u) du

}
,

taken to be a numeraire. Thus P (t, T )/β(t) is a Q-
martingale for all T , and P (t, T ) is arbitrage-free. Note
that the HJM framework takes the savings account as a
numeraire. Then this model must require the existence of
the forward rate process.
We denote the set of all bond price processes implied

from the HJM framework by HQ. Then the inclusion rela-
tion among HQ, NQ and YQ is as follows.

HQ ⊂ NQ ⊂ YQ. (4)

Next we sketch the BGM framework [1]. We set

r(t, x) = f(t, t+ x).
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Let ν(t, x) be an Rd-valued adapted volatility process.
Consider the following equation:

dr(t, x) =

{
∂r(t, x)

∂x
+ ν(t, x) · νx(t, x)

}
dt+ νx(t, x) · dWt,

(5)
where νx(t, x) = ∂ν(t, x)/∂x. It is shown in [1] that if
ν(t, x), t ≥ 0 is adapted, and νx(t, x) is bounded, then
there exists a unique mild solution4 r(t, x) to (5). r(t, x) is
represented by

r(t, x) = r(0, t+ x)

+

∫ t

0

νx(s, x+ t− s) · ν(s, x+ t− s) ds

+

∫ t

0

νx(s, x+ t− s) · dWs. (6)

It follows that

P (t, T )

β(t)
= P (0, T ) exp

{
−
∫ t

0

ν(s, T − s) · dWs

− 1

2

∫ t

0

|ν(s, T − s)|2 ds
}

(7)

Therefore P (t, T )/β(t) is a Q-martingale and then P (t, T )
is arbitrage-free. To verify the existence of r(t, x), we give
the following definition.

Definition 1. γ(t, x) is said to be regular if for all t ≥ 0,
γ(t, x) and

M(t, x) =

∫ t

0

γ(s, x+ t− s) · dWs

is differentiable in x ∈ R+, moreover γ(t, 0) = 0 and

∂

∂x
γ(t, x)|x=0 = 0.

Let an initial rate r(0, x) be positive and continuous in x.
[1] shows that if γ(t, x) is deterministic, bounded, piecewise
continuous, and regular, then (5) has a unique solution
r(t, x) such that r(t, x) is continuous in x.
Next, LIBOR at time t over the period [t+ x, t+ x+ δ]

is given by

1 + δL(t, x) = exp

{∫ x+t+δ

x+t

f(t, u)du

}
4Let r(t) = r(t, ·), ν(t) = ν(t, ·) and νx(t) = νx(t, ·). (5) is ex-

pressed by

dr(t) =

{
∂r(t)

∂x
+ ν(t) · νx(t)

}
dt+ νx(t) · dWt.

∂/∂x is an infinitesimal generator of a semigroup S(s) such that
S(s)r(t) = r(t, s + ·). r(t) is said to be a mild solution to the above
equation if it holds that

r(t) = S(t)r(0)+

∫ t

0
S(t−s)(νx(s) ·ν(s)) ds+

∫ t

0
S(t−s)νx(s) ·dWs.

This is equivalent to (6). For details see Da Prato and Zabczyk [3].

for t ≥ 0. Obviously it holds that

1 + δL(t, x) =
P (t, t+ x+ δ)

P (t, t+ x)
.

Suppose that the dynamics of L(t, x) are given by

dL(t, x) =

{
∂L(t, x)

∂x
+ L(t, x)γ(t, x) · ν(t, x)

+
δL2(t, x)

1 + δL(t, x)
|γ(t, x)|2

}
dt+ L(t, x)γ(t, x) · dWt, (8)

where γ(t, x) is an Rn-valued volatility, and ν(t, x) is given
by

ν(t, x) =

[x/δ]∑
i=1

δL(t, x− δi)

1 + δL(t, x− δi)
γ(t, x− δi). (9)

Note that (9) implies ν(t, x) = 0 for 0 ≤ x < δ. From [1] if
γ(t, x) is deterministic, bounded and piecewise-continuous,
and L(0, x) > 0, then there exists a unique solution
L(t, x) > 0 to (8) for t ≥ 0 . Here, P (t, T ) is referred to as
the BGM model if the LIBOR process is expressed by (8)
with a regular volatility γ(t, x).

Example 3.1. Every constant volatility γ(t, x) ≡ a ( ̸= 0)
is not regular, because γ(0, x) ̸= 0. In this case, there
exists a LIBOR process but no instantaneous forward rate
process. This is a trivial example of a non-BGM model. □

When γ(t, x) is not regular, the forward rate process is
not obtained. Then the term structure dynamics are not
analyzed in the HJM framework. However, if the LIBOR
process exists, a discrete family of bond price processes is
defined by an arbitrary adapted process B satisfying

Bj(Ti) =

j−1−i∏
l=0

(1 + δL(Ti, Tl))
−1 (10)

for all (i, j) ∈ J . It holds that Bj(Tj) = 1 and |Bj(Ti)| ≤ 1
since L(t, x) > 0. A numeraire θ(t) is defined by

θ(t) =
Bm(t)(t)

B1(0)

m(t)−1∏
j=1

(1 + δL(Tj , 0)), i ≤ n− 1, (11)

where m(t) is an integer satisfying

Tm(t)−1 < t ≤ Tm(t).

It is known5 that Bi(t)/θ(t) is a Q martingale for all
i. Then B is arbitrage-free. In this paper, we call B the
LIBOR market model after [6]. We denote the set of all LI-
BOR market models by LQ. Obviously LQ is not included
in HQ, Then we have the following inclusion relation.

LQ ⊂ NQ \ HQ

Note that in this paper, the BGM model is included in HQ.
Moreover if γ is regular, it holds that

Bj(Ti) = P (Ti, Tj), (i, j) ∈ J, (12)

θ(Ti) = β(Ti), 0 ≤ i ≤ n. (13)

5For details see [6] or [8].
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Remark. We briefly recall the space introduced in the
previous work [10], where the space Gbgm is defined as the
set of volatility functions γ(t, x). Obviously Gbgm includes
only the BGMmodel, and is not extendable to involve other
term structure models, such as the LIBOR market model.
Moreover, the metric on Gbgm was defined by a sum of

the difference of γ(t, x), L(t, x), and prices of some options.
This metric is not only complicated but also ambiguous
because the metric depends on the choice of options.
On the other hand, our new space Y is defined as the

equivalent class of bond prices at (Ti, Tj) ∈ J . Therefore
Y involves almost all term structure models, including the
short rate model, the whole yield curve model like the HJM
model, and the discrete family of bonds like the LIBOR
market model. Moreover, the metric on Y is given by the
difference of only the bond prices, so the topology of Y is
weaker than that of Gbgm Hence Y is a broad generalization
of Gbgm.

4. L2-theoretical relation among term
structure models

Let Q be fixed, and let ∆ be a closed domain in R2 defined
by

∆ = {(t, x) ∈ R2 : t, x ≥ 0, t+ x ≤ Tn}

Consider a sequence of deterministic volatility functions
{γα(t, x)}α≥0 such that each γα(t, x) is bounded and
piecewise-continuous. Lα(t, x) denotes the LIBOR process
associated with γα(t, x). Let Bαj(t), j = 1, . . . , n and θα(t)
be a bond price and the numeraire implied from γα(t, x) by
(10) and (11), respectively. Particularly, if γα(t, x) is reg-
ular, then we obtain Pα(t, T ) and βα(t) with respect to α.
It follows from (12) and (13) that

Bαj(Ti) = Pα(Ti, Tj), (i, j) ∈ J, (14)

θα(Ti) = βα(Ti), 0 ≤ i ≤ n. (15)

The following definition is one of the sufficient conditions
for the convergence of Lα(t, x).

Definition 2. We say that γα converges to γ0 on ∆ in
condition L if for arbitrarily small ε > 0 there exists a
positive constant α0 and measurable subsets dTε , dXε ⊂ I
such that µ(dTε ) < ε, µ(dXε ) < ε, and |γα − γ0| < ε on a set

∆ \ {(t, x) : t ∈ dTε or x ∈ dXε }

for all 0 < α < α0, where µ( ) is the usual Lebesgue mea-
sure on R.

Note that condition L is slightly stronger than uniform
convergence in the wider sense. The next example shows
that condition L is not a severe restriction within the
BGM framework.

Example 4.1. Let γ(t, x) be a piecewise constant
function on ∆ such that γ(t, x) is constant on each cell,

∆ij = {(t, x) ∈ ∆ : δ(i− 1) ≤ t < δi, δ(j − 1) ≤ x < δj}.

Obviously γ(t, x) is not regular. We set for ϵ > 0,

γϵ(t, x) =

{
γ(t, x) x > ϵ

0 ϵ ≥ x ≥ 0.

Consider a 2-dimensional convolution operator ϕϵ which
is a smooth function with compact support such that the
support of ϕϵ reduces to the central point as ϵ → 0. Since
γ(t, x) is integrable on ∆, the convolution ϕϵ ∗γϵ is regular,
and {ϕϵ∗γϵ(t, x)}ϵ≥0 converges to γ(t, x) in condition L. □

Under the condition L, we have the following result, in
which EQ[ ] denotes the expectation with respect to Q.
Note that the proof does not assume the existence of r(t, x).

Proposition 1. Let L(0, x) be a positive initial LIBOR.
Suppose that {γα(t, x)}α≥0 is a sequence of uniformly
bounded, piecewise continuous, and deterministic volatil-
ities. If γα converges to γ0 on ∆ in condition L, then it
follows that

lim
α→0

EQ[|Lα(Ti, Tk)− L0(Ti, Tk)|2] = 0, (i, k) ∈ K, (16)

lim
α→0

EQ[|Bαj(Ti)−B0j(Ti)|2] = 0, (i, j) ∈ J, (17)

lim
α→0

EQ[|θα(Ti)− θ0(Ti)|2] = 0, 0 ≤ i ≤ n. (18)

Proof. The proof for (16) is given in [10]. Since Lα(t, x) > 0
on ∆, it holds for (i, j) ∈ J that

EQ[|1 + δLα(Ti, Tj−i)|−2] < 1.

And from (10), it holds that 0 < Bj(Ti) ≤ 1. Then we
have

EQ[|Bj(Ti)|3] ≤ 1.

Applying Lemma 1 in the Appendix iteratively for (10), we
have (17).
For an arbitrary integer m ≥ 1, [10] shows that there

exists a positive constant C depending on m such that

EQ[|Lα(Ti, Tk)|m] < C

for (i, k) ∈ K. It follows by the Minkowski inequality that

EQ[|1 + δLα(Ti, Tk)|m] < 1 + C. (19)

From (11) we have

θα(Ti) =

i−1∏
l=0

(1 + δLα(Tl, 0)). (20)

From (19), (20) and Lemma 2 it follows that

E[|θα(Ti)|3] < C ′ (21)

for a positive constant C ′ depending on n.
Since

(1+δLα(Ti, 0))−(1+δL0(Ti, 0)) = δ(Lα(Ti, 0)−L0(Ti, 0)),

(16) implies that (1 + δLα(Ti, 0)) converges to (1 +
δL0(Ti, 0)) in L2-sense for all i. Iteratively applying
Lemma 1 in the Appendix for (19), (20) and (21), we obtain
(18). This completes the proof.
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Additionally, [10] shows that under the condition L, the
price convergence holds for a class of options that includes
European cap and swaption.
The next theorem shows that the LIBOR market models

are placed at the boundary6 of HQ. This topologically
explains the relation between the LIBOR market model
and the HJM model. Note that HQ is well defined since
YQ is complete.

Theorem 1. It holds that

LQ ⊂ NQ ∩ (HQ \ HQ). (22)

Proof. Let L(0, x) > 0 be an initial LIBOR and γ0(t, x) be
a bounded, piecewise continuous, and deterministic volatil-
ity. Also assume that γ0(t, x) is not regular. Then there
exists a LIBOR process L0(t, x) and a bond price process
B0 associated with γ0(t, x). From the definition of the LI-
BOR market model, it holds that B0 /∈ HQ. To prove the
theorem, it is sufficient to construct a sequence {Pα} in HQ

that converges to B0 in YQ.
By analogy with Example 4.1, we can find a sequence

γα(t, x), α > 0 of uniformly bounded, continuous, and reg-
ular functions such that γα(t, x) converges to γ0(t, x) on ∆
in condition L as α → 0. Let Lα(t, x) and Pα(t, T ) be the
LIBOR and the bond price associated with γα(t, x), α > 0.
Then it holds that Pα ∈ HQ for every α > 0. Since γα is
regular when α > 0, it follows from (14) and (15) that

Bαj(Ti) = Pα(Ti, Tj).

From Proposition 1, limα→0 dQ(Pα, B0) = 0. Hence B0 ∈
HQ. This completes the proof.

Remark. By all rights, Theorem 1 should be described
under the original measure. With regard to this issue, re-
call that the BGM model is one of the HJM models, which
is obviously constructed under P like as (2). Naturally, the
market price of risk explains the relation between P and
Q. On the one hand, the LIBOR market model is origi-
nally constructed under the risk-neutral measure Q. This
is specified under the original measure P in Yasuoka [11],
where dQ/dP is clarified. Under these relations, it is ex-
pected that YP is equivalent to YQ. This is a rather tech-
nical matter, so our argument is developed under the fixed
measure Q for simplicity.

5. Conclusion

We constructed a metric space Y of bond price processes
that admits natural properties in a financial sense. The
metric contributes to see property that the LIBOR market
model inherits from the HJM model through this metric.
Consequently, we obtain the inclusion relation among term
structure models, as shown in Figure 1,
Y involves many types of term structure models, for ex-

ample Vasicek [9], Cox et al. [2], and Ho and Lee [5]. Hence

6The term “boundary” is used expediently. Indeed, HQ \ HQ is
not exactly a boundary of HQ, since HQ is not necessary an open set
in YQ.

from a mathematical viewpoint, it would be possible to
topologically classify the relation among them.

 
YQ 

NQ Arbitrage-free 

HQ          HJM 

BGM 

LIBOR market model

Figure 1: Inclusion relation among term-structure models

Appendix

Lemma 1. {Aα} and {Bα} are sequences of stochastic
variables that respectively converge to A0 and B0 in L2

sense when α goes to zero. If it holds that

E[|Aα|2] < C and E[|AαBα|3] < C

for α > 0, then {AαBα} converges to A0B0 in L2 sense.

Proof. The Schwarz inequality implies

EQ[|AαBα −A0B0|]
≤ EQ[|Aα(Bα −B0)|] + EQ[|(Aα −A0)B0|]

≤ EQ[|Aα|2]
1
2EQ[(Bα −B0)

2]
1
2

+ EQ[|B0|2]
1
2EQ[(Aα −A0)

2]
1
2

≤ C ′EQ[(Bα −B0)
2]

1
2 + C ′EQ[(Aα −A0)

2]
1
2

for some positive constant C ′. Then AαBα converges to
A0B0 in probability. From the assumption it follows that

E[|AαBα|3] < C ′

for some positive constant C ′. Then from the second in-
equality in the assumption, AαBα converges to A0B0 in L2

sense.

Lemma 2. Let Ai, i = 1, . . . , n be stochastic variables.
For an arbitrary integer m > 0, if there exists a positive
constant C(m) depending on m such that

E[|Ai|m] < C(m)

for all i, then it follows that

E[|A1A2 · · ·Aj |3] < C ′ (23)

for arbitrary j, 1 ≤ j ≤ n, where C ′ is a positive constant
depending on n.
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Proof. Since the cases i = 1, 2 are trivial, it is sufficient to
prove when j ≥ 3. Using the Schwarz inequality twice, we
have

E[|A1A2A3|3]2 ≤ E[|A1|6]E[|A2A3|6]
≤ E[|A1|6](E[|A2|12]E[|A3|12])1/2

≤ C(6)C(12).

Thus (23) holds for j = 3. Similarly, (23) is obtained for
j ≥ 4.
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