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Abstract. The spectrum of discrete Schrodinger operator L + V' on the d-dimensional lattice is
considered, where L denotes the discrete Laplacian and V' a delta function with mass at a single
point. Eigenvalues of L+ V are specified and the absence of singular continuous spectrum is proven.
In particular it is shown that an embedded eigenvalue does appear for d > 5 but does not for

1<d<4.
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1. INTRODUCTION

In this paper we are concerned with the spectrum of d-
dimensional discrete Schrodinger operators on square lat-
tices. Let ¢2(Z%) be the set of ¢? sequences on the d-
dimensional lattice Z?. We consider the spectral property
of a bounded self-adjoint operator defined on ¢%(Z%):

L+V,

where the d-dimensional discrete Laplacian L is defined by
Li() = o7 3 wly)
AN e Y
z—y|=

and the interaction V' by
Vip(x) = vdo(2)y ().

Here v > 0 is a non-negative coupling constant and d¢(x)
denotes the delta function with mass at 0 € Z, i.e.,

0 =15 250

To study the spectrum of L + V we transform L + V by
the Fourier transformation. Let T? = [—7,7]? be the d-
dimensional torus, and F: ¢2(Z%) — L%(T%) be the Fourier
transformation defined by

(Fg)(0) = > v(n)e ™,

T €L

where 0 = (61,...,04) € T?. The inverse Fourier transfor-
mation is then given by

-1 _L eiwﬂ
(P0)@) = g [, vl0)e"d.

Hence L + V is transformed to a self-adjoint operator on

L2(T9):
F(L+V)F'4(0)

1< v

=3 > cos; | () + @ o Y(0)ds. (1)

Jj=1

In what follows we denote the right-hand side of (1) by

H = H(v), and we set H(0) = Hy. Thus
H:g+v(cp,~)Lz(Td)<p, Y= (27T)7d/2]1,

where (-,-)p2(ra) denotes the scalar product on L?(T%),

which is linear in the right-component and anti-linear in

the left-component, and ¢ is the multiplication by the real-
valued function:

g(0) =

Ul

d
g cosb;.
j=1

Hence H can be realized as a rank-one perturbation of the
discrete Laplacian g. We study the spectrum of H. We
denote the spectrum (resp. point spectrum, discrete spec-
trum, absolutely continuous spectrum, singular continuous
spectrum, essential spectrum) of self-adjoint operator T" by
U(T) (I"GSp. Op (T)a Ud(T)v Oac (T)v Osc (T)7 Uess(H))~

2. RESULTS

In the continuous case the d-dimensional Schrédinger op-
erator with an external potential vWW is defined by the self-
adjoint operator Hg = —A + vW in L2(R%). Let W < 0,
not identically zero and W € LL (R?). Let N denote the
number of strictly negative eigenvalues of Hg. It is known
that N > 1 for all values of v > 0 for d = 1,2 [Sim05,

Proposition 7.4]. However in the case of d > 3, by the
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Lieb-Thirring bound [Lie76] N < ag [ [oW (x)|%/2dz fol-
lows with some constant ay independent of W and v. In
particular for sufficiently small v > 0, it follows that N = 0.
For the discrete case similar results to those of the contin-
uous version may be expected. We summarize the result
obtained in this paper below.

Theorem 1. The spectrum of H is as follows:

(0ac(H) and oess(H))
Oac(H) = 0ess(H) = [-1,1] for allv >0 and d > 1.

(0sc(H))
osc(H) =0 for allv >0 and d > 1.

(op(H)) Let the critical value v, be defined by (3).

(d=1,2) For each v > 0, there exists E > 1 such
that op(H) = oq(H) = {E}. In particular E =
V1+v2 in the case of d = 1.

(d=3,4)
(v > wv.) There exists E > 1 such that

op(H) = 0q(H) = {E}.
(v <w.) op(H)=0.

(d=>5)
(v > wv.) There exists E > 1 such that

op(H) = 0a(H) = {E}.

(v="1.) op(H) = {1}.
(v <we) op(H)=0.

We give the proof of Theorem 1 in Section 3 below.
The absolutely continuous spectrum o,.(H) and essential
spectrum oess(H) are discussed in Section 3.1, eigenvalues
op(H) in Theorem 3 and Theorem 2, and singular contin-
uous spectrum og.(H) in Theorem 4.

3. SPECTRUM

ABSOLUTELY CONTINUOUS SPECTRUM AND ESSEN-
TIAL SPECTRUM

3.1.

It is known and fundamental to show that o,.(H) =
oess(H) = [-1,1]. Note that o(Hy) = oa.c(Hp) =
oess(H) = [—1,1] is purely absolutely continuous spec-
trum and purely essential spectrum. Since the perturba-
tion v(¢p, ) is a rank-one operator, the essential spectrum
leaves invariant. Then oes(H) = [—1,1]. Let 5%, de-
note the absolutely continuous part of H. The self-adjoint
operator H is a rank-one perturbation of g. Then the
wave operator Wy = limy_, 4 e®H®e=itHo exigts and is
complete, which implies that Hy and H(v)[ s, are unitar-
ily equivalent by Wi 'HoWy = H(v)[x.. In particular
Oac(H) = 04c(Ho) = [—1, 1] follows.
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3.2. EIGENVALUES

3.2.1. ABSENCE OF EMBEDDED EIGENVALUES IN [—1,1)

In this section we discuss eigenvalues of H. Namely we
study the eigenvalue problem Hvy = Ev), i.e.,

v(e, ¥)p = (E = g)¢.
The key lemma is as follows.

Lemma 1. E € o,(H) if and only if

1

o B g(0) d(’) '
@

F g € LX(TY  and v = (2m)¢ (

Furthermore when E € o,(H), it follows that
1 1

H -F
E—g E-yg

i.e., ﬁ is the eigenvector associated with E. In particular
every eigenvalue is simple.

Proof. Suppose that E € o,(H). Then (E — g)y =
v(p,¥)p. Since ¢ € L*(T?) and (E — g)v is a constant,
E —g # 0 almost everywhere and ¢ = v(¢, )¢/ (E—g) fol-
lows. Thus (E — g)~! € L*(T9). Inserting ¢ = ¢(E — g)~!
with some constant ¢ on both sides of (F —g)v = v(¢, ¥)e,
we obtain the second identity in (2) and then the necessity
part follows. O

The sufficiency part can be easily seen. We state the
absence of embedded eigenvalues in the interval [—1,1).
This can be derived from (2).

Theorem 2. o,(H)N[-1,1) =0.

Proof. Suppose that —1 € o,(H). Then there exists a
non-zero vector ¥ such that (¢, (g + 1)1) + v|(p,%)|? = 0.
Thus (¢, (g + 1)¥) = 0 and |(¢,%)|?> = 0 follow. However
we see that (¢, (g + 1)) # 0, since g has no eigenvalues
(has purely absolutely continuous spectrum). Then it is
enough to show o,(H) N (—1,1) = . We shall check that
ﬁ ¢ L?(T?) for —1 < E < 1. By a direct computation
we have

1
/Td & 902"

1
/[1E,1E]d (% Z?ZIXJ-)2 ,

J

1

Zl,-u,Xd—l = Zd—l and

dX.

d
=1

Changing variables by X; =
Z;lzl X, = Z. Then we have

d—1 1 d—1
x Jdz T dz;,
=z ) 711



Fumio Hiroshima, Itaru Sasaki, Tomoyuki Shirai and Akito Suzuki

where J = |det 72&1 Z_‘f;d’)z)

denotes the inside of a d-dimensional convex polygon in-
cluding the origin, since —1 < E < 1, and A is the clo-
sure of A. Then we can take a rectangle [—6, §]¢ such that
[—4,8]? C A for sufficiently small 0 < §. We have the lower
bound

= 1 is a Jacobian and A

—dZ

5
df > const x (26)d*1d2/ 73

1
/Td (B —g(6))?
and the right-hand side diverges. Then the theorem follows
from (2). O

3.2.2. EIGENVALUES IN [1,00)

Operator H is bounded by the bound ||H|| < 1+ v/(27)%.
Then by Theorem 2 and v > 0, eigenvalues are included in
the interval [1, (27)%v + 1] whenever they exist. We define
the critical value v, by

= (2m)¢ </w 1_‘;(6)619)_1 € [0,00) (3)

with convention é =0.
Lemma 2. (1) The function [1,00) 3 E — [, E%g(e)de
is continuously decreasing.

(2) ve=0 ford=1,2 and v, > 0 ford > 3.
(3) (E—9)~

(4) (1—-g)~t € LA(T?) ford >5 and (1 — g)
for1<d<4.

Ve L2(TY) for alld > 1 and E > 1.

“l g L2(TY)

Proof. (1) and (3) are straightforward. In order to show (2)
it is enough to consider a neighborhood U of points where
the denominator 1 — g(6) vanishes. On U, approximately

1 d
0520 @

Then

d—1

1 1
/ﬁdez/ 7d9%const></ r 3 dr.
v1—g(0) UQdZ] 105 P

We have fUlidQ < oo for d > 3 and
71]

Jy =ss—2d0 = oo for d = 1,2. Then (2) follows. (4)
2d Z_7 1 7

can be proven in a similar manner to (2). Since

1 1
/U<1—g<e>>2d9”/U ERSIT

2d j=1"3
pd—1
~ const x/ —dr,
’ T
we have (1—g)~! € L?(T?) ford > 5and (1—g)~! ¢ L?(T?)
for d=1,2,3,4. O
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From this lemma we can immediately obtain results on
eigenvalue problem of

v(p,P)p = (B — g)1. (5)

Theorem 3. (d =1,2) (5) has a unique solution v =
up to a multiplicative constant and E > 1 for

V1402 ford=1.

(d=3,4) (5) has the unique solution ¥ = =— up to a
g
multiplicative constant and E > 1 for v > v, and no
non-zero solution for v < v.. In particular 1 is not
eigenvalue for H(v.).

E—-g
each v > 0. In particular £ =

(d >5) (5) has the unique solution 1) = £*— up to a mul-
g
tiplicative constant and E > 1 for v > v, and no
non-zero solution for v < v.. In particular E = 1
is eigenvalue for H(v.).

Proof. In the case of d =1,2, (2) is fulfilled for all v > 0,
and 5= [ 5= g( y = =1 follows from H5— L — _E_ Thus

-9 E—g
E = \/1+v2 for d = 1. In the case of d = 3,4, (2) is
fulfilled for v > v, but not for v = v.. In the case of d > 5,

(2) is fulfilled for v > wv.. O

3.3. ABSENCE OF SINGULAR CONTINUOUS SPECTRUM

Let (T'),, = (¢, T¢) be the expectation of T" with respect
to ¢. We introduce three subsets in R. Let

X = {3: cR ‘ Im ((Ho — (z +i0)) 1) > 0}
v ={oeR|((H-2)2)," >0}
Z =R\ (XUY).

Note that Im ((Ho — (z + ie))*1>¢ < €((Ho— x)*2>¢.
Then X, Y and Z are mutually disjoint. Let p2® (resp. uSe
and pPP) be the spectral mesure of the absolutely contin-
uous spectral part of H(v) (resp. singular continuous part,
point spectral part). A key ingredient to prove the absence
of singular continuous spectrum of a self-adjoint operator
with rank-one perturbation is the result of [SW86, The-
orem 1(b) and Theorem 3] and [Aro57]. We say that a
measure 7 is supported on A if n(R\ A) = 0.

Proposition 1. For anyv # 0, p2°
is supported on'Y and p5°
when R\ X UY is countable, osc(H

is supported on X, ubP
is supported on Z. In particular
) =0 follows.

Proof. The former result is due to [SW86, Theorem 1(b)
and Theorem 3]. Since any countable sets have pSc-zero
measure, the latter statement also follows. O

H)=0.

Proof. We shall show that R\ X UY is countable. Let
E € 0,(H). Then it is shown in (2) that ((Ho — E)_2>¢ =
de (g@%E)QdG < 00. Then E €Y. Let x € (—

Theorem 4. oy(

oo, —1) U
(1,00). It is clear that ((Ho — E)_2>¢ < co. Then

o (H) U (—00,—1) U (1,00) C Y. (6)
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Let x € (—1,1). Then (z —g)~* € L*(T?) follows from the
proof of Theorem 2. We have

tn{(Ho (@ +i0) ™), = [ o=t

We can compute the the right-hand side above in the same
way as in the proof of Theorem 2:

)
€ €
40> (25 ‘Hdz/ dZ ——.
Aua@—wu+2-* ) s re

Then the right-hand side above converges to (20)?~1d?r >
0 as € J 0. Then

(-1,1) c X. (7)
By (6) and (7), R\ X UY C {-1,1}, the theorem follows
from Proposition 1. O

4. CONCLUDING REMARKS

Our next issue will be to consider the spectral properties
of discrete Schrodinger operators with the sum (possibly
infinite sum) of delta functions:

L—l—vZéaj 1<n<oo. (8)
j=1

This is transformed to

n

H=g+v) (¢;,")¢; (9)

Jj=1

by the Fourier transformation, where ¢; = (27)~%/2¢ =04
Note that

(ivgs) = 2m) |

Td

€i(ai_aj)9d0 = (5”

When n < oo, H is a finite rank perturbation of g. Then
the absolutely continuous spectrum and the essential spec-
trum of H are [—1,1]. In this case the discrete spectrum
is studied in e.g., [HMO11] for d = 1. See also [DKSO05].
The absence of singular continuous spectrum of H may be
shown by an application of the Mowrre estimate [Mou80)].
In order to study eigenvalues we may need further effort.

Note added in proof: After the completion of this paper
J. Bellissard and H. Schulz-Baldes send us [BS12] to our
attention.
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