
Journal of Math-for-Industry, Vol. 4 (2012B-4), pp. 105–108

A案 B案

D案 E案 F案

C案

Note on the spectrum of discrete Schrödinger operators
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Abstract. The spectrum of discrete Schrödinger operator L + V on the d-dimensional lattice is
considered, where L denotes the discrete Laplacian and V a delta function with mass at a single
point. Eigenvalues of L+V are specified and the absence of singular continuous spectrum is proven.
In particular it is shown that an embedded eigenvalue does appear for d ≥ 5 but does not for
1 ≤ d ≤ 4.
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1. Introduction

In this paper we are concerned with the spectrum of d-
dimensional discrete Schrödinger operators on square lat-
tices. Let ℓ2(Zd) be the set of ℓ2 sequences on the d-
dimensional lattice Zd. We consider the spectral property
of a bounded self-adjoint operator defined on ℓ2(Zd):

L+ V,

where the d-dimensional discrete Laplacian L is defined by

Lψ(x) =
1

2d

∑
|x−y|=1

ψ(y)

and the interaction V by

V ψ(x) = vδ0(x)ψ(x).

Here v > 0 is a non-negative coupling constant and δ0(x)
denotes the delta function with mass at 0 ∈ Zd, i.e.,

δ0(x) =

{
1, x = 0
0, x ̸= 0.

To study the spectrum of L + V we transform L + V by
the Fourier transformation. Let Td = [−π, π]d be the d-
dimensional torus, and F : ℓ2(Zd) → L2(Td) be the Fourier
transformation defined by

(Fψ)(θ) =
∑
x∈Zd

ψ(n)e−ix·θ,

where θ = (θ1, . . . , θd) ∈ Td. The inverse Fourier transfor-
mation is then given by

(F−1ψ)(x) =
1

(2π)d

∫
Td

ψ(θ)eix·θdθ.

Hence L + V is transformed to a self-adjoint operator on
L2(Td):

F (L+ V )F−1ψ(θ)

=

1

d

d∑
j=1

cos θj

ψ(θ) +
v

(2π)d

∫
Td

ψ(θ)dθ. (1)

In what follows we denote the right-hand side of (1) by
H = H(v), and we set H(0) = H0. Thus

H = g + v(φ, ·)L2(Td)φ, φ = (2π)−d/21l,

where (·, ·)L2(Td) denotes the scalar product on L2(Td),
which is linear in the right-component and anti-linear in
the left-component, and g is the multiplication by the real-
valued function:

g(θ) =
1

d

d∑
j=1

cos θj .

Hence H can be realized as a rank-one perturbation of the
discrete Laplacian g. We study the spectrum of H. We
denote the spectrum (resp. point spectrum, discrete spec-
trum, absolutely continuous spectrum, singular continuous
spectrum, essential spectrum) of self-adjoint operator T by
σ(T ) (resp. σp(T ), σd(T ), σac(T ), σsc(T ), σess(H)).

2. Results

In the continuous case the d-dimensional Schrödinger op-
erator with an external potential vW is defined by the self-
adjoint operator HS = −∆ + vW in L2(Rd). Let W ≤ 0,
not identically zero and W ∈ L1

loc(Rd). Let N denote the
number of strictly negative eigenvalues of HS . It is known
that N ≥ 1 for all values of v > 0 for d = 1, 2 [Sim05,
Proposition 7.4]. However in the case of d ≥ 3, by the
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Lieb-Thirring bound [Lie76] N ≤ ad
∫
|vW (x)|d/2dx fol-

lows with some constant ad independent of W and v. In
particular for sufficiently small v > 0, it follows thatN = 0.
For the discrete case similar results to those of the contin-
uous version may be expected. We summarize the result
obtained in this paper below.

Theorem 1. The spectrum of H is as follows:

(σac(H) and σess(H))
σac(H) = σess(H) = [−1, 1] for all v ≥ 0 and d ≥ 1.

(σsc(H))
σsc(H) = ∅ for all v ≥ 0 and d ≥ 1.

(σp(H)) Let the critical value vc be defined by (3).

(d = 1, 2) For each v > 0, there exists E > 1 such
that σp(H) = σd(H) = {E}. In particular E =√
1 + v2 in the case of d = 1.

(d = 3, 4)

(v > vc) There exists E > 1 such that

σp(H) = σd(H) = {E}.

(v ≤ vc) σp(H) = ∅.

(d ≥ 5)

(v > vc) There exists E > 1 such that

σp(H) = σd(H) = {E}.

(v = vc) σp(H) = {1}.
(v < vc) σp(H) = ∅.

We give the proof of Theorem 1 in Section 3 below.
The absolutely continuous spectrum σac(H) and essential
spectrum σess(H) are discussed in Section 3.1, eigenvalues
σp(H) in Theorem 3 and Theorem 2, and singular contin-
uous spectrum σsc(H) in Theorem 4.

3. Spectrum

3.1. Absolutely continuous spectrum and essen-
tial spectrum

It is known and fundamental to show that σac(H) =
σess(H) = [−1, 1]. Note that σ(H0) = σac(H0) =
σess(H) = [−1, 1] is purely absolutely continuous spec-
trum and purely essential spectrum. Since the perturba-
tion v(φ, ·)φ is a rank-one operator, the essential spectrum
leaves invariant. Then σess(H) = [−1, 1]. Let Hac de-
note the absolutely continuous part of H. The self-adjoint
operator H is a rank-one perturbation of g. Then the
wave operator W± = limt→±∞ eitH(v)e−itH0 exists and is
complete, which implies that H0 and H(v)⌈Hac are unitar-
ily equivalent by W−1

± H0W± = H(v)⌈Hac . In particular
σac(H) = σac(H0) = [−1, 1] follows.

3.2. Eigenvalues

3.2.1. Absence of embedded eigenvalues in [−1, 1)

In this section we discuss eigenvalues of H. Namely we
study the eigenvalue problem Hψ = Eψ, i.e.,

v(φ,ψ)φ = (E − g)ψ.

The key lemma is as follows.

Lemma 1. E ∈ σp(H) if and only if

1

E − g
∈ L2(Td) and v = (2π)d

(∫
Td

1

E − g(θ)
dθ

)−1

.

(2)

Furthermore when E ∈ σp(H), it follows that

H
1

E − g
= E

1

E − g
,

i.e., 1
E−g is the eigenvector associated with E. In particular

every eigenvalue is simple.

Proof. Suppose that E ∈ σp(H). Then (E − g)ψ =
v(φ,ψ)φ. Since ψ ∈ L2(Td) and (E − g)ψ is a constant,
E−g ̸= 0 almost everywhere and ψ = v(φ,ψ)φ/(E−g) fol-
lows. Thus (E − g)−1 ∈ L2(Td). Inserting ψ = c(E − g)−1

with some constant c on both sides of (E−g)ψ = v(φ,ψ)φ,
we obtain the second identity in (2) and then the necessity
part follows.

The sufficiency part can be easily seen. We state the
absence of embedded eigenvalues in the interval [−1, 1).
This can be derived from (2).

Theorem 2. σp(H) ∩ [−1, 1) = ∅.

Proof. Suppose that −1 ∈ σp(H). Then there exists a
non-zero vector ψ such that (ψ, (g + 1)ψ) + v|(φ,ψ)|2 = 0.
Thus (ψ, (g + 1)ψ) = 0 and |(φ,ψ)|2 = 0 follow. However
we see that (ψ, (g + 1)ψ) ̸= 0, since g has no eigenvalues
(has purely absolutely continuous spectrum). Then it is
enough to show σp(H) ∩ (−1, 1) = ∅. We shall check that

1
E−g ̸∈ L2(Td) for −1 < E < 1. By a direct computation
we have∫

Td

1

(E − g(θ))2
dθ

=

∫
[−1−E,1−E]d

1

( 1d
∑d

j=1Xj)2

d∏
j=1

1√
1− (Xj + E)2

dX.

Changing variables by X1 = Z1, . . . , Xd−1 = Zd−1 and∑d
j=1Xj = Z. Then we have∫

Td

1

(E − g(θ))2
dθ

=

∫
∆

1
1
d2Z2

1√
1− (Z − Z1 − · · · − Zd−1 + E)2

×

d−1∏
j=1

1√
1− (Zj + E)2

JdZ

d−1∏
j=1

dZj ,
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where J =
∣∣det ∂(Z1,...,Zd−1,Z)

∂(X1,...,Xd)

∣∣ = 1 is a Jacobian and ∆

denotes the inside of a d-dimensional convex polygon in-
cluding the origin, since −1 < E < 1, and ∆ is the clo-
sure of ∆. Then we can take a rectangle [−δ, δ]d such that
[−δ, δ]d ⊂ ∆ for sufficiently small 0 < δ. We have the lower
bound∫

Td

1

(E − g(θ))2
dθ ≥ const× (2δ)d−1d2

∫ δ

−δ

1

Z2
dZ

and the right-hand side diverges. Then the theorem follows
from (2).

3.2.2. Eigenvalues in [1,∞)

Operator H is bounded by the bound ∥H∥ ≤ 1 + v/(2π)d.
Then by Theorem 2 and v > 0, eigenvalues are included in
the interval [1, (2π)dv + 1] whenever they exist. We define
the critical value vc by

vc = (2π)d
(∫

Td

1

1− g(θ)
dθ

)−1

∈ [0,∞) (3)

with convention 1
∞ = 0.

Lemma 2. (1) The function [1,∞) ∋ E 7→
∫
Td

1
E−g(θ)dθ

is continuously decreasing.

(2) vc = 0 for d = 1, 2 and vc > 0 for d ≥ 3.

(3) (E − g)−1 ∈ L2(Td) for all d ≥ 1 and E > 1.

(4) (1− g)−1 ∈ L2(Td) for d ≥ 5 and (1− g)−1 ̸∈ L2(Td)
for 1 ≤ d ≤ 4.

Proof. (1) and (3) are straightforward. In order to show (2)
it is enough to consider a neighborhood U of points where
the denominator 1− g(θ) vanishes. On U , approximately

1− g(θ) ≈ 1

2d

d∑
j=1

θ2j . (4)

Then∫
U

1

1− g(θ)
dθ ≈

∫
U

1
1
2d

∑d
j=1 θ

2
j

dθ ≈ const×
∫
U ′

rd−1

r2
dr.

We have
∫
U

1
1
2d

∑d
j=1 θ2

j

dθ < ∞ for d ≥ 3 and∫
U

1
1
2d

∑d
j=1 θ2

j

dθ = ∞ for d = 1, 2. Then (2) follows. (4)

can be proven in a similar manner to (2). Since∫
U

1

(1− g(θ))2
dθ ≈

∫
U

1

( 1
2d

∑d
j=1 θ

2
j )

2
dθ

≈ const×
∫
U ′

rd−1

r4
dr,

we have (1−g)−1 ∈ L2(Td) for d ≥ 5 and (1−g)−1 ̸∈ L2(Td)
for d = 1, 2, 3, 4.

From this lemma we can immediately obtain results on
eigenvalue problem of

v(φ,ψ)φ = (E − g)ψ. (5)

Theorem 3. (d = 1, 2) (5) has a unique solution ψ =
1

E−g up to a multiplicative constant and E > 1 for

each v > 0. In particular E =
√
1 + v2 for d = 1.

(d = 3, 4) (5) has the unique solution ψ = 1
E−g up to a

multiplicative constant and E > 1 for v > vc and no
non-zero solution for v ≤ vc. In particular 1 is not
eigenvalue for H(vc).

(d ≥ 5) (5) has the unique solution ψ = 1
E−g up to a mul-

tiplicative constant and E ≥ 1 for v ≥ vc and no
non-zero solution for v < vc. In particular E = 1
is eigenvalue for H(vc).

Proof. In the case of d = 1, 2, (2) is fulfilled for all v > 0,
and v

2π

∫
Td

1
E−g(θ) = 1 follows from H 1

E−g = E
E−g . Thus

E =
√
1 + v2 for d = 1. In the case of d = 3, 4, (2) is

fulfilled for v > vc, but not for v = vc. In the case of d ≥ 5,
(2) is fulfilled for v ≥ vc.

3.3. Absence of singular continuous spectrum

Let ⟨T ⟩φ = (φ, Tφ) be the expectation of T with respect
to φ. We introduce three subsets in R. Let

X =
{
x ∈ R

∣∣∣ Im ⟨
(H0 − (x+ i0))−1

⟩
φ
> 0

}
Y =

{
x ∈ R

∣∣∣ ⟨(H0 − x)−2
⟩−1

φ
> 0

}
Z = R \ (X ∪ Y ).

Note that Im
⟨
(H0 − (x+ iϵ))−1

⟩
φ

≤ ϵ
⟨
(H0 − x)−2

⟩
φ
.

Then X, Y and Z are mutually disjoint. Let µac
v (resp. µsc

v

and µpp
v ) be the spectral mesure of the absolutely contin-

uous spectral part of H(v) (resp. singular continuous part,
point spectral part). A key ingredient to prove the absence
of singular continuous spectrum of a self-adjoint operator
with rank-one perturbation is the result of [SW86, The-
orem 1(b) and Theorem 3] and [Aro57]. We say that a
measure η is supported on A if η(R \A) = 0.

Proposition 1. For any v ̸= 0, µac
v is supported on X, µpp

v

is supported on Y and µsc
v is supported on Z. In particular

when R \X ∪ Y is countable, σsc(H) = ∅ follows.

Proof. The former result is due to [SW86, Theorem 1(b)
and Theorem 3]. Since any countable sets have µsc

v -zero
measure, the latter statement also follows.

Theorem 4. σsc(H) = ∅.

Proof. We shall show that R \ X ∪ Y is countable. Let
E ∈ σp(H). Then it is shown in (2) that

⟨
(H0 − E)−2

⟩
φ
=∫

Td
1

(g(θ)−E)2 dθ < ∞. Then E ∈ Y . Let x ∈ (−∞,−1) ∪
(1,∞). It is clear that

⟨
(H0 − E)−2

⟩
φ
<∞. Then

σp(H) ∪ (−∞,−1) ∪ (1,∞) ⊂ Y. (6)
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Let x ∈ (−1, 1). Then (x− g)−1 ̸∈ L2(Td) follows from the
proof of Theorem 2. We have

Im
⟨
(H0 − (x+ iϵ))−1

⟩
φ
=

∫
Td

ϵ

(g(θ)− x)2 + ϵ2
dθ.

We can compute the the right-hand side above in the same
way as in the proof of Theorem 2:∫

Td

ϵ

(g(θ)− x)2 + ϵ2
dθ ≥ (2δ)d−1d2

∫ δ

−δ

dZ
ϵ

Z2 + ϵ2
.

Then the right-hand side above converges to (2δ)d−1d2π >
0 as ϵ ↓ 0. Then

(−1, 1) ⊂ X. (7)

By (6) and (7), R \X ∪ Y ⊂ {−1, 1}, the theorem follows
from Proposition 1.

4. Concluding remarks

Our next issue will be to consider the spectral properties
of discrete Schrödinger operators with the sum (possibly
infinite sum) of delta functions:

L+ v
n∑

j=1

δaj 1 < n ≤ ∞. (8)

This is transformed to

H = g + v
n∑

j=1

(φj , ·)φj (9)

by the Fourier transformation, where φj = (2π)−d/2e−iθaj .
Note that

(φi, φj) = (2π)−d

∫
Td

ei(ai−aj)θdθ = δij .

When n < ∞, H is a finite rank perturbation of g. Then
the absolutely continuous spectrum and the essential spec-
trum of H are [−1, 1]. In this case the discrete spectrum
is studied in e.g., [HMO11] for d = 1. See also [DKS05].
The absence of singular continuous spectrum of H may be
shown by an application of the Mourre estimate [Mou80].
In order to study eigenvalues we may need further effort.
Note added in proof : After the completion of this paper

J. Bellissard and H. Schulz-Baldes send us [BS12] to our
attention.
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