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Abstract. Two kinds of discrete hungry Lotka-Volterra systems (dhLV) are known as discretiza-
tions of the additive type hungry Lotka-Volterra system and the multiplicative one. By associating
the dhLV of additive type (dhLVI) and the discrete hungry Toda equation (dhToda) with LR trans-
formations, some of the authors give a Bäcklund transformation between these two systems. In this
paper, from the dhLV of multiplicative type (dhLVII), we first derive the qd-type dhLVII. Through
finding the positivity of the qd-type dhLVII and the LR transformation associated with the dhLVII,
we present Bäcklund transformations among the dhLVI, the dhLVII and the dhToda. Moreover, by
using one of the Bäcklund transformations, we show asymptotic convergence of the qd-type dhLVII.

Keywords. Bäcklund transformation, LR transformation, asymptotic convergence, discrete hungry
Toda equation, discrete hungry Lotka-Volterra system

1. Introduction

The integrable Lotka-Volterra system (LV) is known as
one of the ordinary differential equations that describe
predator-prey dynamics in mathematical biology. In [1,
2, 3], one of extended LV is presented as

duk(t)

dt
= uk(t)

(
M∑
p=1

uk+p(t)−
M∑
p=1

uk−p(t)

)
,

k = 1, 2, . . . ,Mm, t ≥ 0,

u1−M (t) ≡ 0, . . . , u0(t) ≡ 0,

uMm+1(t) ≡ 0, . . . , uMm+M (t) ≡ 0,

(1)

and another extended LV is given in [2, 3] as

dvk(t)

dt
= vk(t)

(
M∏
p=1

vk+p(t)−
M∏
p=1

vk−p(t)

)
,

k = 1, 2, . . . ,Mm +M − 1, t ≥ 0,

v1−M (t) ≡ 0, . . . , v0(t) ≡ 0,

vMm+M (t) ≡ 0, . . . , vMm+M+(M−1)(t) ≡ 0,

(2)

where M is a positive integer, Mk := (M + 1)k −M , and
uk(t) and vk(t) denote the populations of the kth species
at the continuous time t. Eqs. (1) and (2) describe the
competition such that the kth species is predator of the
(k+1)th, the (k+2)th, . . . , the (k+M)th species and is prey
of the (k − 1)th, the (k − 2)th, . . . , the (k −M)th species.
In the case of M = 1, both (1) and (2) become the original
LV. As M grows larger, for the kth species, the number of
species of both the preys and the predators increase. So,

(1) and (2) are called the hungry LV (hLV) of additive type
and multiplicative type, respectively. Sometimes, (1) and
(2) are referred to as the Bogoyavlensky lattices. The hLV
(1) and (2) are also derived from a spatial discretization of
the Korteweg-de Vries equation [4].
The discretized version of (1) is presented in [5, 6] as
u
(n+1)
k

M∏
p=1

(
1 + δ(n+1)u

(n+1)
k−p

)
= u

(n)
k

M∏
p=1

(
1 + δ(n)u

(n)
k+p

)
,

k = 1, 2, . . . ,Mm, n = 0, 1, . . . ,

u
(n)
1−M ≡ 0, . . . , u

(n)
0 ≡ 0, u

(n)
Mm+1 ≡ 0, . . . , u

(n)
Mm+M ≡ 0,

(3)

and that of (2) is given in [6] as

v
(n+1)
k

(
1 + δ(n+1)

M∏
p=1

v
(n+1)
k−p

)
= v

(n)
k

(
1 + δ(n)

M∏
p=1

v
(n)
k+p

)
,

k = 1, 2, . . . ,Mm +M − 1, n = 0, 1, . . . ,

v
(n)
1−M ≡ 0, . . . , v

(n)
0 ≡ 0,

v
(n)
Mm+M ≡ 0, . . . , v

(n)
Mm+M+(M−1) ≡ 0,

(4)

respectively. Both (3) and (4) are called the discrete hLV
(dhLV). In this paper, in order to distinguish two kinds of
the dhLVs, we simply refer to (3) and (4) as the dhLVI asso-
ciated with the continuous hLV of additive type (1) and the
dhLVII associated with the continuous hLV of multiplica-
tive one (2), respectively. In (3) and (4), δ(n) represents

the step size at the discrete time n. The variables u
(n)
k

and v
(n)
k denote the population of the kth species at the
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discrete time n. The dhLVI (3) is shown in [7] to have an
application for computing complex eigenvalues of a certain
band matrix.
The discrete Toda equation
q
(n+1)
i + e

(n+1)
i−1 = q

(n)
i + e

(n)
i , i = 1, 2, . . . ,m,

q
(n+1)
i e

(n+1)
i = q

(n)
i+1e

(n)
i , i = 1, 2, . . . ,m− 1,

e
(n)
0 ≡ 0, e

(n)
m ≡ 0, n = 0, 1, . . . ,

(5)

is also a famous integrable system. Here, the superscript
n is the time variable, as in (3) and (4), and the subscript
i denotes the spatial variable. A study on box and ball
system in [8] leads to an extended version of the discrete
Toda equation (5),
Q

(n+M)
i + E

(n+1)
i−1 = Q

(n)
i + E

(n)
i , i = 1, 2, . . . ,m,

Q
(n+M)
i E

(n+1)
i = Q

(n)
i+1E

(n)
i , i = 1, 2, . . . ,m− 1,

E
(n)
0 ≡ 0, E

(n)
m ≡ 0, n = 0, 1, . . . ,

(6)

with positive integerM , which is named the discrete hungry
Toda equation. In this paper, for the simplicity, we call (6)
the dhToda. In [9], a new algorithm for computing matrix
eigenvalues is designed based on the dhToda (6).
Some of the authors in [10] found a relationship of de-

pendent variables, namely, a Bäcklund transformation, be-
tween the dhLVI (3) and the dhToda (6) through asso-
ciating these integrable systems with a sequence of LR
transformations of matrices. Bäcklund transformation is
originally derived from the study of differential geometry.
Explicit form of the Bäcklund transformation helps us to
understand intrinsic features of an integrable system such
as the solutions and symmetry and its relationship with
another integrable system [11].
Here, for a nonsingular matrix A, the LR transformation

[12] is defined as

A = LR, Â = RL. (7)

The 1st equation of (7) represents the LR decomposition
of A where L is a lower triangular and R is a unit upper
triangular matrix. It is to be noted that the LR decompo-
sition where R has unit diagonal entries is uniquely given.
The 2nd equation generates Â as the matrix product RL.
Let Â = L̂R̂ be the LR decomposition of Â. From (7), we
get L̂R̂ = RL. This type of equation appears in the ma-
trix representation of some discrete integrable systems, and
is called the Lax representation of them. The eigenvalues
of Â coincide with those of A. So, the LR transforma-
tion (7) yields a similarity transformation from A to Â,
namely, Â = RAR−1. For example, in order to compute
the eigenvalues of a symmetric tridiagonal matrix, the quo-
tient difference (qd) algorithm employs a sequence of LR
transformations. It is interesting that the recursion for-
mula of the qd algorithm is just equal to the discrete Toda
equation (5).
However, there is no observation that the dhLVII (4) is

associated with a sequence of LR transformations. In this
paper, we first associate the dhLVII (4) with a sequence
of LR transformations. Based on this result, we present a

Bäcklund transformation between the dhLVII (4) and the
dhToda (6). Additionally, a Bäcklund transformation be-
tween the dhLVI (3) and the dhLVII (4) is also presented
for the case of δ(n) → ∞.
With the help of the relationship among the dhLVI (3),

the dhLVII (4) and the dhToda (6), we next show the
asymptotic behavior of the dhLVII (4) as n → ∞, by using
the convergence property of the dhToda (6) given in [9].
The dhLVII (4) is also shown to be applicable for matrix
eigenvalue computation.
This paper is organaized as follows. In Section 2, we

derive a system called the qd-type dhLVII from the original
dhLVII (4) through variable transformation. We also show
the positivity of the qd-type dhLVII under suitable condi-
tions. In Section 3, we give a Lax representation for the
dhLVII (4), and then relate it to the LR transformation of
a band matrix. We also review the Lax representation for
the dhToda (6) and the LR transformation associated with
it. In Section 4, by comparing two LR transformations in
Section 2, we derive a Bäcklund transformation between
the dhLVII (4) and the dhToda (6). By taking account of
the Bäcklund transformation between the dhLVI (3) and
the dhToda (6) given in [10], we also derive a Bäcklund
transformation between the dhLVI (3) and the dhLVII (4)
for the case of δ(n) → ∞. We investigate the asymptotic
behaviour of the dhLVII variables through the Bäcklund
transformation between the dhLVII (4) and the dhToda
(6). The asymptotic behaviour of the dhToda variables is
already shown in [9]. In Section 5, we give numerical exam-
ples in order to demonstrate some theorems in the previous
sections. Finally, in Section 6, conclusion is presented.

2. The qd-type dhLVII and positivity of
its variables

In this section, we introduce the qd-type dhLVII which is
derived from the dhLVII (4) and show the positivity of
its variables. For the simplicity, we employ the notations
Φ1,Φ2,Φ3,Φ4 and Φ5 defined as

Φ1 := {1, 2, . . . ,Mm +M − 1},
Φ2 := {1, 2, . . . ,Mm−1 +M},
Φ3 := {1, 2, . . . ,m− 1},
Φ4 := {1, 2, . . . ,m},
Φ5 := {0, 1, . . . ,M − 1}.

These index sets appear throughout this paper frequently.

2.1. The qd-type dhLVII

Let us introduce new variables

ω
(n)
k := v

(n)
k

(
1 + δ(n)

M∏
p=1

v
(n)
k−p

)
, ∀k ∈ Φ1, (8)

γ
(n)
k := δ(n)

M∏
p=0

v
(n)
k+p,

∀k ∈ Φ2, (9)
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from the dhLVII variable v
(n)
k and the discrete step size

δ(n). From the boundary condition of v
(n)
k , we have

ω
(n)
k = v

(n)
k , ∀k ∈ Φ5 ∪ {M} \ {0}, (10)

γ
(n)
−k = 0, ∀k ∈ Φ5, (11)

γ
(n)
Mm+j = 0, ∀j ∈ Φ5. (12)

Then these variables satisfy the recursion formula{
ω
(n+1)
k + γ

(n)
k−M = ω

(n)
k + γ

(n)
k , ∀k ∈ Φ1,

ω
(n+1)
k γ

(n)
k+1 = ω

(n)
k+M+1γ

(n)
k , ∀k ∈ Φ2 \ {Mm−1 +M}.

(13)

This is easily checked as follows.

ω
(n+1)
k + γ

(n)
k−M

= v
(n+1)
k

(
1 + δ(n+1)

M∏
p=1

v
(n+1)
k−p

)
+ δ(n)

M∏
p=0

v
(n)
k−M+p

= v
(n)
k

(
1 + δ(n)

M∏
p=1

v
(n)
k+p

)
+ δ(n)

M∏
p=0

v
(n)
k−p

= v
(n)
k

(
1 + δ(n)

M∏
p=1

v
(n)
k−p

)
+ δ(n)

M∏
p=0

v
(n)
k+p

= ω
(n)
k + γ

(n)
k ,

ω
(n+1)
k γ

(n)
k+1

=

[
v
(n+1)
k

(
1 + δ(n+1)

M∏
p=1

v
(n+1)
k−p

)][
δ(n)

M∏
p=0

v
(n)
k+p+1

]

=

[
v
(n)
k

(
1 + δ(n)

M∏
p=1

v
(n)
k+p

)][
δ(n)

M∏
p=0

v
(n)
k+p+1

]

= v
(n)
k+M+1

(
1 + δ(n)

M∏
p=1

v
(n)
k+p

)(
δ(n)

M∏
p=0

v
(n)
k+p

)

= v
(n)
k+M+1

(
1 + δ(n)

M∏
p=1

v
(n)
k+M+1−p

)(
δ(n)

M∏
p=0

v
(n)
k+p

)
= ω

(n)
k+M+1γ

(n)
k .

Eq. (13) has the form similar to the recursion formula of
the qd algorithm (5). In order to distinguish (13) from
the dhLVII (4), we hereinafter call (13) the qd-type dhLVII.
Also, we can rewrite the qd-type dhLVII as

ω
(n+1)
k = ω

(n)
k + γ

(n)
k − γ

(n)
k−M ,

γ
(n)
k+1 =

ω
(n)
k+M+1γ

(n)
k

ω
(n+1)
k

.
(14)

If ω
(n)
k for ∀k ∈ Φ1 and γ

(n)
1 are given, we can obtain ω

(n+1)
k

for ∀k ∈ Φ1 and γ
(n)
k for ∀k ∈ Φ2 \ {1} by using (14). Let

us assume that ω
(n)
k > 0 for ∀k ∈ Φ1 and γ

(n)
1 > 0. Then

we can relate γ
(n)
1 to δ(n) as follows. From (9) and (10), we

derive

γ
(n)
1 = δ(n)

M+1∏
p=1

v(n)p

= δ(n)v
(n)
M+1

M∏
p=1

ω(n)
p

=

δ(n)ω
(n)
M+1

M∏
p=1

ω(n)
p

1 + δ(n)
M∏
p=1

ω(n)
p

=

M+1∏
p=1

ω(n)
p

1

δ(n)
+

M∏
p=1

ω(n)
p

. (15)

From (15), it holds that

δ(n) =
γ
(n)
1

(ω
(n)
M+1 − γ

(n)
1 )

M∏
p=1

ω(n)
p

.

Hence, the condition δ(n) > 0 is equivalent to

0 < γ
(n)
1 < ω

(n)
M+1.

2.2. Positivity of the qd-type dhLVII variables

We give a theorem concerning the positivity of the qd-type

dhLVII variables ω
(n)
k and γ

(n)
k .

Theorem 1. Let us assume that ω
(n)
k > 0, ∀k ∈ Φ1 and

0 < γ
(n)
1 < ω

(n)
M+1, then it holds that

ω
(n+1)
k > 0, ∀k ∈ Φ1,

γ
(n)
k > 0, ∀k ∈ Φ2.

Proof. In the discussion for the positivity of the qd-type
dhLVII variables, it is useful to introduce an auxiliary vari-

able d
(n)
k defined by

d
(n)
k = ω

(n)
k − γ

(n)
k−M , ∀k ∈ Φ1. (16)

From (11) and (16), it follows that{
d
(n)
k = ω

(n)
k , ∀k ∈ Φ5 ∪ {M} \ {0},

d
(n)
M+1 = ω

(n)
M+1 − γ

(n)
1 .

(17)

By combining (17) with the assumption, we have

d
(n)
k > 0, ∀k ∈ Φ5 ∪ {M,M + 1} \ {0}.
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In terms of d
(n)
k , we may rewrite the 1st equation of (14)

as
ω
(n+1)
k = γ

(n)
k + d

(n)
k , ∀k ∈ Φ1. (18)

From (14) and (16), we also get the recursion formula for

d
(n)
k and d

(n)
k+M+1 as follows.

d
(n)
k+M+1 = ω

(n)
k+M+1 − γ

(n)
k+1

=
ω
(n)
k+M+1

ω
(n+1)
k

(
ω
(n+1)
k − γ

(n)
k

)
=

ω
(n)
k+M+1

ω
(n+1)
k

d
(n)
k . (19)

From (14), (18) and (19), we get a differential form without
subtraction as follows.

ω
(n+1)
k = γ

(n)
k + d

(n)
k ,

γ
(n)
k+1 =

ω
(n)
k+M+1γ

(n)
k

ω
(n+1)
k

,

d
(n)
k+M+1 =

ω
(n)
k+M+1

ω
(n+1)
k

d
(n)
k .

(20)

By using (20) repeatedly, we can compute ω
(n+1)
k , γ

(n)
k+1 and

d
(n)
k+M+1 for k = 1, 2, . . . . Since the initial values ω

(n)
k for

∀k ∈ Φ1, γ
(n)
1 and d

(n)
k for ∀k ∈ Φ5 ∪ {M,M + 1} \ {0} are

positive by assumption and there are no subtractions, we
can conclude that all the computed variables are positive.

3. LR transformations associated with
the dhLVII

In this section, we give a Lax representation of the dhLVII

(4), and then present a sequence of LR transformations
associated with the dhLVII (4). In addition, we briefly
review [10] concerning the LR transformation associated
with the dhToda (6).
A Lax representation of the qd-type dhLVII (13) is given

by

L̂(n+1)R̂(n) = R̂(n)L̂(n), (21)

where

L̂(n) =



0 ω
(n)
1

... 0 ω
(n)
2

0
...

. . .
. . .

1 0
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . . ω
(n)
Mm+M−1

1 0 . . . 0


,

︸ ︷︷ ︸
M

M︷ ︸︸ ︷

R̂(n) =



1 0 . . . 0 γ
(n)
1

. . . 0 . . . 0 γ
(n)
2

. . .
. . .

. . .
. . .

. . .
. . .

. . . γ
(n)
Mm−1

. . .
. . . 0
. . .

. . .
...

. . . 0
1



.

By focusing on the entries in the both sides of (21), we can
get the qd-type dhLVII (13). This means that (21) is a Lax
representation of the qd-type dhLVII (13). Of course, the
Lax representation (21) with (8) and (9) is just equal to
that of the dhLVII (4) in [6].
It is remarkable here that the Lax representation is not

always uniquely given. In the following theorem, we present
a new Lax representation for the qd-type dhLVII (13).

Theorem 2. As δ(n) → ∞, a Lax representation of the
qd-type dhLVII (13) becomes

L(n+1)
j+1 R(n)

j+1 = R(n)
j L(n)

j+1, j ∈ Φ5, (22)

where

L(n)
j =


ω
(n)
M1+j−1

1 ω
(n)
M2+j−1

. . .
. . .

1 ω
(n)
Mm+j−1

 , (23)

R(n)
j =


1 γ

(n)
M1+j

1
. . .

. . . γ
(n)
Mm−1+j

1

 . (24)

Proof. In (20), let us assume that ω
(n)
k > 0 for ∀k ∈ Φ1,

0 < c ≤ γ
(n)
1 ≤ ω

(n)
M+1, where c is some positive constant.

We first show that the qd-type dhLVII variables satisfy the
following inequality.

dk ≤ d
(n)
k ≤ dk,

∀k ∈ Φ1 \ {i(M + 1)}, ∀i ∈ Φ3,

d
(n)
k ≤ dk,

∀k ∈ {i(M + 1)}, ∀i ∈ Φ3,

γ
k
≤ γ

(n)
k ≤ γk,

∀k ∈ Φ2,

ωk ≤ ω
(n+1)
k ≤ ωk,

∀k ∈ Φ1,

(25)

where dk, dk, γk
, γk, ωk and ωk are some positive constants

that do not depend on γ
(n)
1 .

We first consider the case where ∀k ∈ Φ5 ∪{M,M +1} \
{0}. From (17), we have

dk ≤ d
(n)
k ≤ dk,

∀k ∈ Φ5 ∪ {M} \ {0}, (26)
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with dk = dk = ω
(n)
k . Similary, from (17), we get

d
(n)
M+1 ≤ dM+1, (27)

with dM+1 = ω
(n)
M+1. Obviously, the assumption leads to

γ
1
≤ γ

(n)
1 ≤ γ1, (28)

with γ
1
= c and γ1 = ω

(n)
M+1. By combining (26)–(28) with

(20), we can prove the following inequalities by induction.{
γ
k
≤ γ

(n)
k ≤ γk,

∀k ∈ Φ5 ∪ {M,M + 1} \ {0, 1},
ωk ≤ ω

(n+1)
k ≤ ωk,

∀k ∈ Φ5 ∪ {M,M + 1} \ {0}.
(29)

In the case where ∀k ∈ {i+M +1},∀ i ∈ Φ5∪{M,M +1}\
{0}, from the 3rd equation of (20), (26), (27) and the 2nd
equation of (29), it holds that

dk ≤ d
(n)
k ≤ dk,

∀k ∈ {i+M + 1}, ∀i ∈ Φ5 ∪ {M} \ {0},
(30)

d
(n)
2(M+1) ≤ d2(M+1). (31)

Moreover, from (29), it follows that

γ
M+2

≤ γ
(n)
M+2 ≤ γM+2. (32)

Eqs. (30)–(32) lead to
γ
k
≤ γ

(n)
k ≤ γk,

∀k ∈ {i+M + 1}, ∀i ∈ Φ5 ∪ {M,M + 1} \ {0, 1},
ωk ≤ ω

(n+1)
k ≤ ωk,

∀k ∈ {i+M + 1}, ∀i ∈ Φ5 ∪ {M,M + 1} \ {0}.

Similary, for ∀k ∈ {(i − 1)(M + 1) + j + 1},∀ i ∈ Φ3 \
{1, 2},∀ j ∈ Φ5, it follows that

dk ≤ d
(n)
k ≤ dk,

γ
k
≤ γ

(n)
k ≤ γk,

ωk ≤ ω
(n+1)
k ≤ ωk,

(33)

and for ∀k ∈ {i(M + 1)},∀ i ∈ Φ3 \ {1, 2}, we have

d
(n)
k ≤ dk.

We next consider the case where ∀k ∈ {(m− 1)(M + 1) +
i + 1},∀ i ∈ Φ5. By combining the 3rd equation of (20),
(33) with (12), we have

dk+i ≤ d
(n)
k+i ≤ dk+i,

∀i ∈ Φ5. (34)

From (34) and the 1st equation of (20), we have

ωk+i ≤ ω
(n+1)
k+i ≤ ωk+i,

∀i ∈ Φ5.

To sum up, we obtain (25).

By using (25), we discuss the behavior of variables in (13)
as δ(n) → ∞. We first consider the case of k = Mi + M ,
∀i ∈ Φ3. By using (19) repeatedly, we derive

d
(n)
Mi+M =

i∏
p=2

ω
(n)
Mp+M

i−1∏
p=1

ω
(n+1)
Mp+M

d
(n)
M+1,

∀i ∈ Φ3 \ {1}. (35)

Eqs. (15) and (17) lead to

d
(n)
M+1 = ω

(n)
M+1 − γ

(n)
1

= ω
(n)
M+1 −

M+1∏
p=1

ω(n)
p

1

δ(n)
+

M∏
p=1

ω(n)
p

=
ω
(n)
M+1

δ(n)
M∏
p=1

ω(n)
p + 1

. (36)

As δ(n) → ∞, from (25), it follows that d
(n)
M+1 → 0 in (36).

From (35), we derive d
(n)
Mi+M → 0 for ∀i ∈ Φ3 \ {1}. By

combining them with (16), we get

lim
δ(n)→∞

(
ω
(n)
Mi+M − γ

(n)
Mi

)
= 0, ∀i ∈ Φ3. (37)

Moreover, from (18) and d
(n)
Mi+M → 0 for ∀i ∈ Φ3, we have

lim
δ(n)→∞

(
ω
(n+1)
Mi+M − γ

(n)
Mi+M

)
= 0, ∀i ∈ Φ3. (38)

Thus, as δ(n) → ∞, (13) becomes the trivial equali-

ties ω
(n+1)
Mi+M + γ

(n)
Mi

= ω
(n)
Mi+M + γ

(n)
Mi+M , ∀i ∈ Φ3 and

ω
(n+1)
Mi+Mγ

(n)
Mi+1

= ω
(n)
Mi+1+Mγ

(n)
Mi+M , ∀i ∈ Φ3 \ {m− 1}.

Next, we consider the cases except for k = Mi + M ,
∀i ∈ Φ3 in the 1st and 2nd equations of (13). We here

focus on the product of L(n+1)
j+1 and R(n)

j+1. The (i, i) and

(i, i+ 1) entries of L(n+1)
j+1 R(n)

j+1 are given as, respectively,

(L(n+1)
j+1 R(n)

j+1)i,i = ω
(n+1)
Mi+j + γ

(n)
Mi−M+j ,

∀i ∈ Φ4,
∀j ∈ Φ5,

(39)

(L(n+1)
j+1 R(n)

j+1)i,i+1 = ω
(n+1)
Mi+j γ

(n)
Mi+j+1,

∀i ∈ Φ3,
∀j ∈ Φ5.

(40)

Similarly, it follows that

(R(n)
j L(n)

j+1)i,i = ω
(n)
Mi+j + γ

(n)
Mi+j ,

∀i ∈ Φ4,
∀j ∈ Φ5,

(41)

(R(n)
j L(n)

j+1)i,i+1 = ω
(n)
Mi+M+j+1γ

(n)
Mi+j ,

∀i ∈ Φ3,
∀j ∈ Φ5.

(42)

Eqs. (22), (39) and (41) bring to the 1st equation of (13).
Also, (22), (40) and (42) lead to the 2nd one. This indicates
that (22) is a Lax representation for the qd-type dhLVII

(13).
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Moreover, we give a lemma concerning the relationship

of the Lax matrices R(n+1)
0 and R(n)

M as δ(n) → ∞.

Lemma 1. As δ(n) → ∞, it holds that

R(n+1)
0 = R(n)

M . (43)

Proof. Obviously, from (37) and (38), ω
(n+1)
Mi+M → γ

(n+1)
Mi

and ω
(n+1)
Mi+M → γ

(n)
Mi+M as δ(n) → ∞. So, it holds that

γ
(n+1)
Mi

→ γ
(n)
Mi+M as δ(n) → ∞. This leads to (43).

Let us introduce the matrix, given by the product of the

Lax matrices L(n)
1 ,L(n)

2 , . . . ,L(n)
M in (23) and R(n)

0 in (24),

A(n) = L(n)
1 L(n)

2 · · · L(n)
M R(n)

0 . (44)

Let us consider R(n)
0 A(n)(R(n)

0 )−1 as a similarity transfor-

mation of A(n) by R(n)
0 . Then, with the help of Theorem

2, we derive

R(n)
0 A(n)(R(n)

0 )−1 = R(n)
0 L(n)

1 L(n)
2 · · · L(n)

M

= L(n+1)
1 R(n)

1 L(n)
2 L(n)

3 · · · L(n)
M

= L(n+1)
1 L(n+1)

2 R(n)
2 L(n)

3 · · · L(n)
M

...

= L(n+1)
1 L(n+1)

2 · · · L(n+1)
M−1 R(n)

M−1L
(n)
M

= L(n+1)
1 L(n+1)

2 · · · L(n+1)
M−1 L(n+1)

M R(n)
M .

(45)

By combining it with Lemma 1, we see that

R(n)
0 A(n)(R(n)

0 )−1 = A(n+1). (46)

This means that the eigenvalues of A(n) are invariant under
the time evolution from n to n+1. Eqs. (45) and (46) also
lead to {

A(n) = (L(n)
1 L(n)

2 · · · L(n)
M )R(n)

0 ,

A(n+1) = R(n)
0 (L(n)

1 L(n)
2 · · · L(n)

M ).
(47)

Hence, we know that A(n+1) is given through the LR trans-
formation of A(n). According to (45), the LR transforma-
tion in (47) coincides with M times LR transformations in
(22). Let us recall here that (22) is a Lax representation
for the dhLVII (4) with δ(n) → ∞. We therefore have the
following theorem.

Theorem 3. The dhLVII (4) with δ(n) → ∞ generates the
LR transformation from A(n) to A(n+1) as in (47).

According to [8], the dhToda (6) satisfies the Lax repre-

sentation,

L(n+M)R(n+1) = R(n)L(n), (48)

L(n) =


Q

(n)
1

1 Q
(n)
2

. . .
. . .

1 Q
(n)
m

 , (49)

R(n) =


1 E

(n)
1

1
. . .

. . . E
(n)
m−1

1

 , (50)

where Q
(n)
i > 0, ∀i ∈ Φ4 and E

(n)
i > 0, ∀i ∈ Φ3. The

Lax representation (48) may look different from that in [8].
Actually, we can easily get the same Lax representation as
in [8] through matrix transposition on both sides of (48).
Let A(n) be the product of the Lax matrices L(n), L(n+1),

. . . , L(n+M−1) in (49) and R(n) in (50), namely,

A(n) = L(n)L(n+1) · · ·L(n+M−1)R(n). (51)

Then, from (48), it follows that

R(n)A(n)(R(n))−1

= R(n)L(n)L(n+1) · · ·L(n+M−1)

= L(n+M)R(n+1)L(n+1)L(n+2) · · ·L(n+M−1)

= L(n+M)L(n+M+1)R(n+2)L(n+2) · · ·L(n+M−1)

...

= L(n+M)L(n+M+1) · · ·L(n+2M−1)R(n+M)

= A(n+M). (52)

Obviously, from (52), the dhToda (6) gives the similarity
transformation from A(n) to A(n+M). Eq. (52) is also
rewritten as{

A(n) = (L(n)L(n+1) · · ·L(n+M−1))R(n),

A(n+M) = R(n)(L(n)L(n+1) · · ·L(n+M−1)).
(53)

Thus, the dhToda (6) has a relationship with the LR trans-
formation as follows.

Theorem 4 ([10]). The dhToda (6) generates the LR
transformation from A(n) to A(n+M) as in (53).

4. Bäcklund transformations among
the discrete hungry systems

In this seciton, by considering the relationship between the
two LR transformations associated with the dhLVII (4) and
the dhToda (6), we give a Bäcklund transfomation between
the dhLVII (4) and the dhToda (6). By referring to [10],
we establish a Bäcklund transformation between the dhLVI

(3) and the dhLVII (4). We also investigate the asymptotic
behavior of the qd-type dhLVII (13) with the help of the
obtained Bäcklund transformation.
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4.1. The Bäcklund transformation between the
dhLVII and the dhToda

We first show the relationship of the matrices in two LR
transformations associated with the dhLVII (4) and the
dhToda (6).

Lemma 2. For some fixed n, let R(n)
0 = R(n) and L(n)

j+1 =

L(n+j), ∀j ∈ Φ5. Then, it holds that

L(n+1)
j+1 = L(n+M+j), R(n)

j+1 = R(n+j+1), ∀j ∈ Φ5.

Proof. The assumption leads to R(n)
0 L(n)

1 = R(n)L(n). Let

us recall that R(n)
0 L(n)

1 = L(n+1)
1 R(n)

1 in (22) and R(n)L(n)

= L(n+M)R(n+1) in (48). So, it follows that

L(n+1)
1 R(n)

1 = L(n+M)R(n+1).

Recall that the upper bidiagonal matrices R(n)
1 and R(n+1)

have 1 in every diagonal entry. Hence, by taking account
of the uniqueness of LR decomposition, we get

L(n+1)
1 = L(n+M), R(n)

1 = R(n+1).

Similarly, it is easily proved by induction for j =

1, 2, . . . ,M − 1 that L(n+1)
j+1 = L(n+M+j) and R(n)

j+1 =

R(n+j+1).

From (44) and (51), it is obvious that A(n) = A(n) if

L(n)
j+1 = L(n+j), ∀j ∈ Φ5 and R(n)

0 = R(n). So, by using

Lemma 2, we see that A(n+1) = A(n+M) since R(n)
j+1 =

R(n+j+1), ∀j ∈ Φ5 and L(n+1)
j+1 = L(n+M+j), ∀j ∈ Φ5. In

other words, the evolution from n to n+1 of the dhLVII (4)
can generate the LR transformation given by the evolution
from n to n+M of the dhToda (6).
Let us replace n with ℓM + j in the superscripts of the

dhLVII and the dhToda variables. Hereinafter, we consider
the evolution from ℓ to ℓ + 1 by the dhLVII (4) and the
dhToda (6). Let us assume that, for some fixed ℓ,{

L(ℓ)
j+1 = L(ℓM+j), ∀j ∈ Φ5,

R(ℓ)
0 = R(ℓM).

(54)

Then, from Lemma 2, it follows that,

L(ℓ+1)
j+1 = L((ℓ+1)M+j), R(ℓ)

j+1 = R(ℓM+j+1), ∀j ∈ Φ5.

(55)

From the 2nd equation of (55) and Lemma 1, it holds that

R(ℓ+1)
0 = R((ℓ+1)M). By focusing on the entries of matrices

in (54), we derive{
E

(ℓM)
i = γ

(ℓ)
Mi

, ∀i ∈ Φ3,

Q
(ℓM+j)
i = ω

(ℓ)
Mi+j ,

∀i ∈ Φ4,
∀j ∈ Φ5,

for ℓ = 0, 1, . . . . Moreover, from (55), we obtain

E
(ℓM+j+1)
i = γ

(ℓ)
Mi+j+1,

∀i ∈ Φ3,
∀j ∈ Φ5,

for ℓ = 0, 1, . . . . To sum up, we derive a theorem on the re-
lationship of the variables, namely, the Bäcklund transfor-
mation, between the qd-type dhLVII (13) and the dhToda
(6).

Theorem 5. A Bäcklund transformation between the qd-
type dhLVII (13) with δ(ℓ) → ∞ and the dhToda (6) is given
by {

E
(ℓM+j)
i = γ

(ℓ)
Mi+j ,

∀i ∈ Φ3,
∀j ∈ Φ5,

Q
(ℓM+j)
i = ω

(ℓ)
Mi+j ,

∀i ∈ Φ4,
∀j ∈ Φ5,

for ℓ = 0, 1, . . . .

It is observed that (8) and (9) are the Bäcklund transfor-
mation between the qd-type dhLVII (13) and the original
dhLVII (4). So, by combining it with Theorem 5, we have
a main theorem in this paper.

Theorem 6. A Bäcklund transformation between the
dhLVII (4) with δ(ℓ) → ∞ and the dhToda (6) is given
by

E
(ℓM+j)
i = δ(ℓ)

M∏
p=0

v
(ℓ)
Mi+j+p,

∀i ∈ Φ3,
∀j ∈ Φ5,

Q
(ℓM+j)
i = v

(ℓ)
Mi+j

(
1 + δ(ℓ)

M∏
p=1

v
(ℓ)
Mi+j−p

)
,

∀i ∈ Φ4,
∀j ∈ Φ5,

for ℓ = 0, 1, . . . .

4.2. The Bäcklund transformation between the
dhLVI and the dhLVII

Let us introduce the new variables
U

(n)
k = u

(n)
k

M∏
p=1

(
1 + δ(n)u

(n)
k−p

)
, ∀k ∈ Φ2 ∪ {Mm},

V
(n)
k =

1

δ(n)

M∏
p=0

(
1 + δ(n)u

(n)
k−p

)
, ∀k ∈ Φ1 ∪ {Mm +M},

(56)

in terms of the dhLVI variable u
(n)
k . Then the dhLVI (3)

can be rewritten as
U

(n+1)
k + V

(n)
M+k+1 = U

(n)
M+k+1 + V

(n)
M+k,

∀k ∈ Φ2,

U
(n+1)
k V

(n)
k = U

(n)
k V

(n)
M+k,

∀k ∈ Φ2 ∪ {Mm},

U
(n)
Mm+j+1 := 0, V

(n)
Mm+M+j+1 :=

1

δ(n)
, ∀j ∈ Φ5.

(57)

Eq. (57) is named the qd-type dhLVI in [13]. Eq. (56)
is a Bäcklund transformation between the original dhLVI

(3) and the qd-type dhLVI (57). Some of the authors, in
[10], give a Bäcklund transformation between the qd-type
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dhLVI (57) with δ(n) → ∞ and the dhToda (6) as follows.

U
(ℓ)
Mi

=
M−1∏
p=0

Q
(ℓM+p)
i , ∀i ∈ Φ4,

U
(ℓ)
Mi+j+1 =

(
M−2∏
p=0

Q
(ℓM+p+j+1)
i

)
E

(ℓM+j)
i ,

∀i ∈ Φ3,
∀j ∈ Φ5.

(58)

By combining the 1st equation of (58) with Theorem 5, for
ℓ = 0, 1, . . . , we get

U
(ℓ)
Mi

=
M−1∏
p=0

ω
(ℓ)
Mi+p,

∀i ∈ Φ4. (59)

Similarly, from Theorem 5 and the 2nd of (58), we derive

U
(ℓ)
Mi+j+1

= Q
(ℓM+j+1)
i Q

(ℓM+j+2)
i · · ·Q(ℓM+M−1)

i

×Q
((ℓ+1)M)
i Q

((ℓ+1)M+1)
i Q

((ℓ+1)M+2)
i · · ·Q((ℓ+1)M+j−2)

i

×
(
Q

((ℓ+1)M+j−1)
i E

(ℓM+j)
i

)
= ω

(ℓ)
Mi+j+1ω

(ℓ)
Mi+j+2 · · ·ω

(ℓ)
Mi+M−1

× ω
(ℓ+1)
Mi

ω
(ℓ+1)
Mi+1ω

(ℓ+1)
Mi+2 · · ·ω

(ℓ+1)
Mi+j−2

×
(
ω
(ℓ+1)
Mi+j−1γ

(ℓ)
Mi+j

)
.

By taking account of the 2nd equation of (13), we succes-

sively rewrite U
(ℓ)
Mi+j+1 as

U
(ℓ)
Mi+j+1 = ω

(ℓ)
Mi+j+1ω

(ℓ)
Mi+j+2 · · ·ω

(ℓ)
Mi+M−1

× ω
(ℓ+1)
Mi

ω
(ℓ+1)
Mi+1ω

(ℓ+1)
Mi+2 · · ·ω

(ℓ+1)
Mi+j−2

×
(
γ
(ℓ)
Mi+j−1ω

(ℓ)
Mi+M+j

)
...

= ω
(ℓ)
Mi+j+1ω

(ℓ)
Mi+j+2 · · ·ω

(ℓ)
Mi+M−1

×
(
ω
(ℓ+1)
Mi

γ
(ℓ)
Mi+1

)
ω
(ℓ)
Mi+M+2 · · ·ω

(ℓ)
Mi+M+j−2

× ω
(ℓ)
Mi+M+j−1ω

(ℓ)
Mi+M+j

= ω
(ℓ)
Mi+j+1ω

(ℓ)
Mi+j+2 · · ·ω

(ℓ)
Mi+M−1

×
(
γ
(ℓ)
Mi

ω
(ℓ)
Mi+M+1

)
ω
(ℓ)
Mi+M+2 · · ·ω

(ℓ)
Mi+M+j−2

× ω
(ℓ)
Mi+M+j−1ω

(ℓ)
Mi+M+j .

Note here that γ
(ℓ)
Mi

→ ω
(ℓ)
Mi+M as δ(n) → ∞. So, it follows

that

U
(ℓ)
Mi+j+1 =

M−1∏
p=0

ω
(ℓ)
Mi+p+j+1,

∀i ∈ Φ3,
∀j ∈ Φ5. (60)

From (59) and (60), we have

U
(n)
k =

M−1∏
p=0

ω
(n)
k+p,

∀k ∈ Φ2 ∪ {Mm}. (61)

By combinig (61) with (8) and (56), it follows that

u
(n)
k

M∏
p=1

(1 + δ(n)u
(n)
k−p)

=
M−1∏
p=0

(
v
(n)
k+p

(
1 + δ(n)

M∏
r=1

v
(n)
k+p−r

))

=

(
M−1∏
p=0

v
(n)
k+p

)
M−1∏
p=0

(
1 + δ(n)

M∏
r=1

v
(n)
k+p−r

)

=

(
M−1∏
p=0

v
(n)
k+p

)
M∏
p=1

(
1 + δ(n)

M−1∏
r=0

v
(n)
k+r−p

)
. (62)

From the boundary condition of u
(n)
k and v

(n)
k , the case

where k = 1 in (62) leads to

u
(n)
1 =

M−1∏
p=0

v
(n)
1+p.

Similarly, by considering the cases where k = 2, 3, . . . ,Mm,

we have u
(n)
k =

∏M−1
p=0 v

(n)
k+p.

The above discussion leads to the following theorem.

Theorem 7. As δ(n) → ∞, a Bäcklund transformation
between the dhLVI (3) and the dhLVII (4) is given by

u
(n)
k =

M−1∏
p=0

v
(n)
k+p,

∀k ∈ Φ2 ∪ {Mm},

for n = 0, 1, . . . .

4.3. The asymptotic behavior of the qd-type
dhLVII variables

We next clarify the asymptotic behavior of the qd-type
dhLVII variables by combining Theorem 5 with the asymp-
totic behavior of the dhToda variables given in [9]. Let us
again replace n with ℓM + j, ∀j ∈ Φ5 in the superscript
of the dhToda variable. Of course, the limit of ℓ → ∞ is
equivalent to that of n → ∞. A minor change of the limit
in [9] brings to the following theorem with respect to the
convergence of the dhToda variables.

Theorem 8 (cf.[9]). Let Q
(0)
i > 0, Q

(1)
i > 0, . . . , Q

(M−1)
i >

0, ∀i ∈ Φ4 and E
(0)
i > 0, ∀i ∈ Φ3. As ℓ → ∞, the limits of

Q
(ℓM+j)
i and E

(ℓM+j)
i are given by

lim
ℓ→∞

M−1∏
p=0

Q
(ℓM+p)
i = Ci,

∀i ∈ Φ4,

lim
ℓ→∞

E
(ℓM+j)
i = 0, ∀i ∈ Φ3,

∀j ∈ Φ5, (63)

where Ci is some constant and C1 ≥ C2 ≥ · · · ≥ Cm > 0.

In [9], it is also shown that {Q(ℓM+j)
i }ℓ=0,1,... is a Cauchy

sequence. This implies that Q
(ℓM+j)
i converges to some

constant Ci,j > 0 as ℓ → ∞, namely,

lim
ℓ→∞

Q
(ℓM+j)
i = Ci,j ,

∀i ∈ Φ4,
∀j ∈ Φ5. (64)
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Since it is shown in Theorem 5 that Q
(ℓM+j)
i = ω

(ℓ)
Mi+j , by

using it in (64), we get

lim
ℓ→∞

ω
(ℓ)
Mi+j = Ci,j ,

∀i ∈ Φ4,
∀j ∈ Φ5. (65)

By taking account that E
(ℓM+j)
i = γ

(ℓ)
Mi+j shown in Theo-

rem 5, from (63), we derive

lim
ℓ→∞

γ
(ℓ)
Mi+j = 0, ∀i ∈ Φ3,

∀j ∈ Φ5. (66)

It is remarkable that (65) and (66) show the convergence

of ω
(n)
k and γ

(n)
k except for k = Mi+M , ∀i ∈ Φ3 as ℓ → ∞.

We next study the convergence of ω
(ℓ)
Mi+M and γ

(ℓ)
Mi+M . Eqs.

(37) and (66) with j = 0 leads to

lim
ℓ→∞

ω
(ℓ)
Mi+M = 0, ∀i ∈ Φ3. (67)

From (38) and (67), it follows that

lim
ℓ→∞

γ
(ℓ)
Mi+M = 0, ∀i ∈ Φ3.

We summarize the asymptotic behavior of the qd-type
dhLVII variables as follows.

Theorem 9. Let us assume that ω
(0)
k > 0, ∀k ∈ Φ1. Then,

the limits of the qd-type dhLVII variables as δ(n) → ∞ are

lim
n→∞

ω
(n)
Mi+j = Ci,j ,

∀i ∈ Φ4,
∀j ∈ Φ5,

lim
n→∞

ω
(n)
Mi+M = 0, ∀i ∈ Φ3,

lim
n→∞

γ
(n)
k = 0, ∀k ∈ Φ2.

5. Numerical Examples

In this section, we numerically observe some properties of
the qd-type dhLVII (13) shown in the previous sections. We
easily realize numerical properties of the original dhLVII (4)
through those of the qd-type dhLVII.
We first demonstrate the asymptotic behavior of the qd-

type dhLVII (13) shown in Theorem 9 numerically. Let

ω
(0)
1 = ω

(0)
2 = 5, ω

(0)
3 = ω

(0)
4 = ω

(0)
5 = 2, ω

(0)
6 = ω

(0)
7 =

ω
(0)
8 = 1 and M = 2,m = 3, δ(n) = 1012, respectively, in

the qd-type dhLVII (13). It is emphasized here that the qd-

type dhLVII variables, except for ω
(0)
k , depend on the value

of δ(n) through γ
(n)
1 , as shown in (15). Figures 1 and 2 show

the behavior of ω
(n)
k , k = 1, 2, 4, 5, 7, 8 and ω

(n)
k , k = 3, 6,

γ
(n)
k , k = 1, 2, 3, 4, 5, 6, for n = 0, 1, . . . , 19, respectively.

We see from Figures 1 and 2 that, as n becomes lager,

ω
(n)
k , k = 1, 2, 4, 5, 7, 8 and ω

(n)
k , k = 3, 6 approach some

positive constants and zero, respectively. This numerical
result agrees with Theorem 9.
We next give a numerical example in order to confirm

the Bäcklund transformation, shown in Theorem 5, be-
tween the dhLVII (4) and the dhToda (6), as δ(n) → ∞.

Let Q
(0)
i = 5, i = 1, 2, . . . , 12 and E

(0)
i = 2, i = 1, 2, 3

with M = 3 and m = 4 in the dhToda (6). Moreover, let

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

Figure 1: A graph of the iteration number n (x-axis) and

the values of ω
(n)
1 , ω

(n)
2 , ω

(n)
4 , ω

(n)
5 , ω

(n)
7 and ω

(n)
8 (y-axis).

◦ : ω
(n)
1 , × : ω

(n)
2 , dotted line: ω

(n)
4 , dashed line: ω

(n)
5 ,

□ : ω
(n)
7 and △ : ω

(n)
8 .
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Figure 2: A graph of the iteration number n (x-axis) and

the values of ω
(n)
3 , ω

(n)
6 and γ

(n)
k for k = 1, 2, 3, 4, 5, 6 (y-

axis). × : ω
(n)
3 , ◦ : ω

(n)
6 , □ : γ

(n)
1 , dashed line: γ

(n)
2 , dotted

line: γ
(n)
3 , + : γ

(n)
4 , ⋆ : γ

(n)
5 and ⋄ : γ

(n)
6 .

ω
(0)
Mi+j = 5, i = 1, 2, 3, 4, j = 0, 1, 2 and ω

(0)
Mi+M = 2,

i = 1, 2, 3 with M = 3 and m = 4 in the qd-type
dhLVII (13). We consider two cases where δ(ℓ) = 0.5 and
δ(ℓ) = 1012 for ℓ = 0, 1, . . . . In Tables 1 and 2, the 1st,
the 2nd and the 3rd columns denote the iteration num-
ber ℓ, the dhToda variables and the qd-type dhLVII ones,
respectively. Table 1 illustrates that, in the case where
δ(ℓ) = 0.5, ℓ = 0, 1, 2, 3, 4, 5, the dhToda and dhLVII vari-
ables coincide with each other in only a few digits. On the
other hand, Table 2 shows that there are little difference
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Table 1: Values of Q
(ℓM)
1 , ω

(ℓ)
M1

and E
(ℓM)
1 , γ

(ℓ)
M1

in the case

where δ(ℓ) = 0.5 for ℓ = 0, 1, . . . , 5 and 50.

ℓ Q
(ℓM)
1 ω

(ℓ)
M1

0 5.00000000000 5.00000000000
1 7.00000000000 6.96850393700
2 7.90909090909 7.89572522147
3 8.34969325153 8.34251316996
4 8.60502692998 8.60022866410
5 8.76967867989 8.76612205167
...

...
...

50 9.04510897048 9.04510897048

ℓ E
(ℓM)
1 γ

(ℓ)
M1

0 2.00000000000 1.96850393700
1 0.909090909090 0.927221284472
2 0.440602342442 0.446787948489
3 0.255333678448 0.257715494134
4 0.164651749916 0.165893387566
5 0.107582241979 0.108492550373
...

...
...

50 1.225191026031E−12 1.407359466438E−12

between Q
(ℓM)
1 , E

(ℓM)
1 and ω

(ℓ)
M1

, γ
(ℓ)
M1

, respectively. Tables
1 and 2 show that Theorem 5 approximately holds for a
sufficiently large δ(ℓ).
In [9], some of the authors have proposed an algorithm

for computing eigenvalues of totally nonnegative matrices,
for which all the minors are nonnegative. So, from the
Bäcklund transformation among the dhLVII (4), the qd-
type dhLVII (13) and the dhToda (6) shown in Section
4, it is easily expected that the dhLVII (4) and the qd-
type dhLVII (13) are applicable for computing the eigen-
values of a totally nonnegative matrix. In particular,

limn→∞
∏M−1

p=0 ω
(n)
Mi+p,

∀i ∈ Φ4 give the eigenvalues of the

totally nonnegative matrix A(0).

6. Conclusion

In this paper, we first introduce the qd-type dhLVII and
show the positivity of its variables. We also give a new Lax
representation for the dhLVII. As δ

(n) → ∞, it is observed
that the Lax representation for the dhLVII is related to the
LR transformation for a band matrix. In other words, the
time evolution of the dhLVII with δ(n) → ∞ corresponds to
the LR transformation. We next explain how to associate
the dhToda with the LR transformation. Remarkably, the
dhLVII with δ(n) → ∞ is associated with the same form
of LR transformation associated with the dhToda. By
identifying two these LR transformations, we finally ob-
tain a Bäcklund transformation between the dhLVII and
the dhToda. Additionally, through considering a Bäcklund
transformation between the dhLVI and the dhToda in [10],

Table 2: Values of Q
(ℓM)
1 , ω

(ℓ)
M1

and E
(ℓM)
1 , γ

(ℓ)
M1

in the case

where δ(ℓ) = 1012 for ℓ = 0, 1, . . . , 5 and 50.

ℓ Q
(ℓM)
1 ω

(ℓ)
M1

0 5.00000000000 5.00000000000
1 7.00000000000 6.99999999999
2 7.90909090909 7.90909090909
3 8.34969325153 8.34969325153
4 8.60502692998 8.60502692998
5 8.76967867989 8.76967867989
...

...
...

50 9.04510897048 9.04510897048

ℓ E
(ℓM)
1 γ

(ℓ)
M1

0 2.00000000000 1.99999999999
1 0.909090909090 0.909090909090
2 0.440602342442 0.440602342442
3 0.255333678448 0.255333678448
4 0.164651749916 0.164651749916
5 0.107582241979 0.107582241979
...

...
...

50 1.225191026031E−12 1.225191026031E−12

we establish a Bäcklund transformation between the dhLVI

and the dhLVII for the case of δ
(n) → ∞. We therefore have

Bäcklund transformations among the dhLVI, the dhLVII

and the dhToda. With the help of the Bäcklund trans-
formation between the dhLVII and the dhToda, we inves-
tigate the asymptotic convergence of the qd-type dhLVII

variables as n → ∞ through that of the dhToda. We fi-
nally give some numerical examples which demonstrate our
theoretical results.

We give a comment that the dhLVII and the qd-type
dhLVII are applicable for computing eigenvalues of a to-
tally nonnegative matrix. A future work is to derive the
Bäcklund transformations among the dhLVI, the dhLVII

and the dhToda in the case where δ(n) is finite.
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