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Abstract. The catenary is the curve which a hanging chain forms, that is, mathematically, the
graph of the function t — ccosh% for a constant ¢ > 0. The study of catenaries is applied to the
design of arches and suspension bridges. The surface of revolution generated by a catenary is called
a catenoid. It is well-known that a catenoid is a minimal surface and the shape which a soap film
between two parallel circles forms. In this article, we consider the approximation of a catenoid by
combinations of some truncated cones keeping the minimality in a certain sense. In investigating
the minimal combinations, the theory of the Gauss hypergeometric functions plays an important

role.
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1. INTRODUCTION

It is interesting to approximate a surface by good surfaces
from an industrial point of view. In this article, we consider
the approximation of a catenoid bounded by two circles of
the same radii by a sequence of piecewise truncated conical
minimal surfaces.

Throughout this article, a truncated cone means a right
circular cone with its apex cut off by a plane parallel to the
cone base.

For zg,z1 > 0 and £ > 0, let Dy ¢4(zo,x1) be the trun-
cated cone such that the radii of two circles of it are g
and z1, and its height is /. Here, we do not consider the
interior of the two circles of radii xg and 1 of Dy (¢, x1).
Putting

Sl7g(l‘0,l‘1) = (xo—l—xl) (.Z‘l —1‘0)24—@2,
the area of Dy ¢(x0,21) is equal to 7 - Sy ¢(z0, x1).

For zg,z1,2z2 > 0 and ¢ > 0, let Dg(z0,x1,x2)
be the figure consisting of the union of Dj ¢(xo,x1) and
Dy y(z1,x2) attached along the circle of radius x;. Sim-
ilarly, for n > 3, we define D,, ¢(xo,21,...,ZTn_1,2y) in-
ductively as the union of D,_1¢(xo,%1,...,2n—1) and
Dy y(zp—1,x,) attached along the circle of radius x,_;.
D, ¢(zo,x2,...,z,) consists of n truncated cones and is
called a piecewise truncated conical surface with length
(n; £) or simply a PTC surface with L-(n; ¢) by definition.
Dy, ¢(zo,x1, . .., xy) has the boundary consisting of two cir-
cles of radii zg and x,,, and its area is equal to

n
77251,@(%—17%)-
i=1
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We put

Sn.[(x07x17 M (En)

= Z Su(xz;l, xz)
i=1

For arbitrary fixed a,b > 0 and n € N,
Dpiae(a, o, z1,. .., Tn,b)

is called a PTC surface with boundary condition (a, b) and
length (n+ 2;¢) or simply BCL-(a,b;n+2;¢). A PTC sur-
(0) (0 0 ) with BOL-(a, b;n+2; )

a,x LL'(O LC(
P O I R I BRI R (4
(0) xgo) (O))

face Dpya.0(

IO bl 7xS

goe e

is said to be minimal by definition if (

is a critical point of the function

(20,15, Zn) > Snt2.e(a, o, T1, ..., Tn, b).

Moreover a PTC minimal surface

(0) .(0)

a,xy’,T] 0) p

n

Dn+2,€( )

with BCL-(a, b; n+2;¢) is said to be stable if and only if the
Hessian matrix of the above function is positive definite at

ey X

(o,20,.... o).
Putting
2Dy o(x0, %1, - ., Tn)
= D2n,£(xn7xn—la sy L1, L0y L1y v oy Tn—1, xn)a

2Dy, (20,21, ...,Tn_1,a) is a PTC surface with BCL-
(a, a; 2n;¢) for arbitrary fixed a > 0. We put

Sa,n,f(x()vxl; e 7xn71) = n,[(x07x17 sy xnflaa)
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If (a:éo),xgo), e ,xfio_)l) is a critical point of S’am,g,
then 2Dn’g($éo),$go),...,$$LO_)1,G) is minimal with BCL-
(a,a;n + 2;¢). Moreover, if the Hessian matrix of S, .
is positive definite there, then 2Dn7g(x(()0), xgo)’ . ,:cg)ll, a)
is stable.

Now, we introduce the main results.

Theorem 1. Forn € N and £ > 0, there are an explicit
function gn¢(x) and a positive number n, , > 0 satisfying
the following:

(1) If a > nne, then the equation gn¢(x) —a =0 has two
positive solutions x(ﬂfn g withzx,  , < x:n e

(2) We see that

2Dn,€($a,n,€i ’ gl7l<xin7£)7 v agnfll(xinj% a)
are PTC minimal surfaces with BCL-(a, a;2n;{).
Moreover,

62
once) =T, (1433

where T, is the (first kind) Chebyshev polynomial.

Theorem 2. Under the same situation as Theorem 1,
2Dn,€ (xa,n,lJr y 91,0 (xa-‘:n’e)’ sy dn—14 (x:;n,z)a Cl)

is stable.

2. THE CcASEs n=1,2,3

In this section we see Theorems 1 and 2 in the cases where
n=1,2,3.

2.1. THE CASEn =1

For a > 0 and ¢ > 0, we consider the critical points of the
function

Sa1,e(x0) == S1(x0,a) = (xo + a)\/(a — x0)? + 12
Since ~
dSeae  2x3 —2axg + 02
dxo Ve —z0)2 + 02

if a > 20 =: 71,0, then there are two critical points

(at£+va?—202)/2
of S'a,l,g(:zco). We put

v _a+Va?-202 _  a—+va?—20?
xa,l,[ T 2 ’ xa,l,[ = 2 .

Then, since

02 22
=gt 5
xa,l,é

_ .t
a=2T,q, + Py
xa,l,@

Journal of Math-for-Industry, Vol. 4 (2012A-4)

if we put
62
gre(x) =+ %
for z > 0, then
{xil,é} = 91_,4}(@)
for @ > m1 . In other words, a positive number z is a
critical point of S'gl,z(x)’l,g(:zzo).
We remark that g;(x) takes the minimum n, at = =
¢/\/2, that is, g'lj(g/\/i) =0 and g1,¢(¢/v2) = n1. Thus,

putting &1,¢ := £/V/2,

+ —
Toq0>80>T,,

for a > ny 4.
Moreover, if we put for > 0, a := g1 ¢(x),
d2§a 1,4
H =2
1,E(:C) dxg (I)a

and
det Hy ¢(x) := Hy o(x)

itself, then

det Hy(z) = (

(22 — ) (42 + 1)
 423((a — x)2 + £2)3/2

4x29’1,e($)
0(4x2 + £2)1/2°

Together with the behavior of g7 ,(z), this formula means
that for a > 14, SQJ)@(IO) takes the local minimum at
x) o because g1 o(z7, ,) > 0.

2.2. THE CASE n =2

For a > 0 and ¢ > 0, we consider the critical points of the
function S,.2 ¢(z0, 1) := S1¢(z0, 1) + S1,e(z1,a), that is,
we consider a point (zg,z1) satisfying
aga,Q,Z aga,Z,Z (
dxg O0x1

By the case where n = 1 and the formula

(xo,21) = xo,x1) = 0.

_2z% — 2wowy + 12 n 229 — 2axy + 02 2.1)
Ve —z0)2+ 02 (a—x1)2+£2 .
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implies that
0 = (223 — 2zoz1 + £2)*((a — 21)* + £?)
— (222 — 2ax; + %) ((x1 — 20)? + £?)
= (*(a — x0) (423 — dawoxy + 2021 + g + al?).

Here, if a = xg, then Formula (2.1) does not hold and so
we have

(0% — daozy)a + 423 + 20%2) + Py =0,
that is,
0 4z3 + 20221 + (2xq
4370.231 - 62
4(g1,0(20))” + 20291 ¢(0) + Cag
4x0g1,0(z0) — 02

202 4
o = 2x]’

where we can check that in this case, Formula (2.1) holds.
If we put

then go ¢(z) is positive, convex in (0, 00), and
lim g2,¢(2) = lim g2,¢(z) = oo

and thus, it takes the unique minimal value 12, > 0 at
a point £ > 0. Hence, if a > 7y, then there are two
. + _ - +
solutions x, , of g2 ¢(x) = a, where z_, , < &20 < 7,4,
Consequently, if a > 12 ¢, then there are two critical points

<$i27g791,£ (fol)) of Su.2.(x0,21); if @ = 12,0, only one
critical point (£2.¢,91.0(§2,¢)); and if @ < a4, there is no
critical point.

We should remark that since g ,(x) > g5 ,(z) for x > 0,
&0 < &¢. By numeric calculations we see that & ~
1.6066¢ and 72 ¢ ~ 2.9720¢.

Seeing the above argument in terms of zy, we have that
for x > 0, if we put a := go(z), then (z,g914(z)) is a
critical point of S (0, 1)

Next, for x > 0, putting a = g2 ¢(z), we investigate the
Hessian matrix

%8020 %8020

Hoa(a) o= | o CI0e ) iy (21010(2)
Tt (@.910(2)) S5 (@, g1e(@)

of ga’g,z(fﬂo,‘fl) at (z,g1,0(x)).
From this point on, we put, for £ > 0 and s,t > 0,

Se(s,t) == (s +t)\/(t—s)2+ 2 (= S1(s,1)).
Then, we see
825’0,,2,@ 8256
G (0 91.a(0) = o @ 010(0),
823{1,2,5 aZSg

Tt (. 910(0) = G (,010(a),
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and
325'(1’2,[ 825(
ax% (xmgl,f(x)) :W(xvgl,f(x))
025,

+ W(gu(ff),gz,z(x))
Then by a direct but long calculation using

(a2 + 22

(92.(r) = 91,00+ = S5 (1) = 2)° 4 2)

we see that the determinant det Hy 4(x) of Hy () satisfies

160° (1- 26 — 35

T R+ )2 (422 + 2)
162°g5 ,()

T R+ 2242 A 2)

det Hy ¢(x)

Thus, if # > & ¢, then det Ha ¢(x) > 0. Moreover &3¢ > &0
implies that if > & ¢, then z > &; 0 and

azsa,2,2
2
0xj

2
(. 900(2)) = S5 (2, g1.0(a)) = Ho(x) > 0

from the case where n = 1. This implies that Hs ¢(z) is

positive definite at (5”;_2 é,gu(xi'g e)) if a > m2 ¢ and

2D5 o(x] 5 g g1.0(2 )5 4), @)

is a stable PTC minimal surface with BCL-(a, a; 4; ¢).

2.3. THE CASEn =3

We consider the critical points of

Sa3,0(x0,T1,22) = Sp(xo, 1) + Se(x1, x2) + Si(x2,0a)

for a > 0. If (xo,x1,x2) is a critical point of ga,gj, then as
in the case where n = 2, we have

Ty = glye(x0)7
T2 = gz,z(fﬁo),

and
. 4a + 20%x5 + (P24
o 45611’2 — 62
_ 4 (92,0(20))° + 20%g2.¢(20) + £2g1.0(20)
491,2(%)92,2(%) — (2
T 5% zy 2z
Putting
(Z‘) = + % + % ﬁ
93,00%) == 2¢ x3 25’

similarly as in the case n = 2, we see that there is
& > 0 with gél(gg,z) = 0 such that if a > n3, =
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93,0(€3.0), then the equation gs¢(x) = a has two so-
lutions xfu with x(f“ > &3¢ > x4,  Moreover
(xiw’glv@(xi&é)’ngf(m(ﬁzi&ﬁ)) are the critical points of

Sa,3,0(x0,T1,22). The same argument as in the case n = 2
implies &3 0 > &2 0.
We define Hs¢(x) for x > 0 as the Hessian matrix of

Sa,3. at (x,91,0(x),g2.¢(x)), where a := g3 ¢(x). Then

625{1,3,@ _
8%08%2 N

implies

)z
det Hz ¢(z) = 0 5;;”2
2

N 2
2
_ (5’ S“’w) x det Hy ¢(z).

x det Ha ¢()

0x10x2

Making a long calculation (with the help of a computer),
we see that

6430189372(95)

det H3 o(z) = 03(22 4 02)2(z4 + 30222 4 (4)2(422 4 £2)3/2°

Thus, by £3.0 > €20 > &1, if € > &34, then det Hs o(x) >
0,det Ha ¢(x) > 0, and det Hy ¢(z) > 0 and as is well-known
in linear algebra, this implies Hs ¢ is positive definite. (See
Lemma 3 described in Section 6.) Consequently,

QDS,Z (1’;370 g1.e (1':73,2)7 92,2(‘%;3,[)7 a)

is stable.

The calculation of the determinant of H,(z) is men-
tioned later.

Repeating the above argument, we see that g4 ¢(x) and
g5,0(x) should be defined as

4 (gs.0(2))® + 20295 o () + Pga.o(x)

gaele): = 4g2.0(7)g3,e(x) — L2
s 10t a8
Sttt T T
g5.0(z) : = 4 (gae(2))” + 20294 () + g3 e(x)
’ 4g3,0(x)gae(x) — 2
TR T VL TR
=Tt 2x x3 275 g7 2797

and in general,

4 (gn-1.4(2))* + 2029, _1.0(x) + gn_2.4(x)
4971—2,@(37)971—1,@(35) — 2

gn,é(w) =

for n > 2, here go () := z.
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3. CATENOIDS AND APPROXIMATIONS OF
THEM

We put for ¢ > 0,

C.(t) == ceosh <t> .

c

The curve (t,C.(t)) is called a catenary. The function
¢ +— ccosh (%) is positive, convex and takes the unique
minimum 7., := 1.5088--- at ¢ = 0.83355--- =: £
Thus, if @ > 74, there are two positive numbers ¢ with

¢y < € < ¢} such that ¢ cosh (C%) =a.

The surface R(C.) := (t,C.(t) cosf,C.(t)sind) is called
a catenoid, which is known as a minimal surface of revolu-
tion, where “minimal” means “of mean curvature 0”. Let

Ce1 be Cel(—1,1). For a > e, R (C’C?l) have the same
boundary. The area of R (C’c; 1) is minimal in the set of

surfaces having the same boundary and that of R (Cc;,1>

is not.
In the view of the previous section, if a > 7, the se-
quence

+
2Dy (23 14,0),
+ +
20,y (w003 904 (%0ap) @)

+ + +
205y (70 p 914 (75ay) 924 (350) 20)

might give an approximation of R (C’ 0371) as PTC minimal

surfaces, where the formula 7., > 7, 1 is proved later.
For example, if a = 2, then

x2+,1,1 =1.707--- |
Tyo1 = 1.699-- -, gl,%(1.699~~~) =1.772--
xig’% =1.697--- | 917%(1.697--~) =1.730---,
gz,%(1.697- -+)=1.830---, (3.1)
and thus,
2D, (1.707---,2),
2D, (1.699---,1.772--- [ 2),
2D% (1.697---,1.730--- ,1.830---,2),

might give an approximate of R (Cc;l) as PTC minimal

surfaces, here

cy =1.696---,
cf =1.696---, C.+(1/2) =1.770-- -,
cy =1.69%---, Cr(1/3) =1.729- -,

C . (2/3) =1.829- -

C2
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(Compare with (3.1).)
Referring to the expansion

1 1 1 1
CCOSh(l/C)—C‘F*‘F@ 6'?4_@4_
we change g, 1(z) for n = 2,3,4 as follows:
(@) =zt + 2
925\ T T 50 T 3928
" 1 n 1-3 1
TP T or T s
" 1 n 3! 1
= —_— _—
2z 0!-23 A4lx3’
(@) =2+ 5 + 55+ 1
I35\ = T o T 9748 T 145840
JrlJr2~4 1 Jr1-2~4-5 1
— 4 = . )
2x 32 4lg3 34 6!z5
n 1 + 4! 1 + 5! 1
— 4 = ) )
20 1!-3% 4lg3  0!-35 6lad’
(z) + ! + > + ! + !
r)=x+ —
9a 2 | 1282° | 102425 | 13107227
+1+3-5 1 +2-3~5-6 1
fr— x —_— —_— .
2z 42 4lg3 44 6!z>
1-2-3-5-6-7 1
46 8lz7
n 1 n 5! 1 n 6! 1
P :L‘ — . .
20  21-43 Alg3  11-45 6lzd
7! 1
+ 0l-47 8l
Thus, it is indicated that
" (n+k—1)
- Z (n— k)!- (2k)l- n2k—1. g2k—1" (3:2)

=0

In fact, we prove this formula in the next section. Assuming
this, we see the following remark.

Remark 1. We put
(@) 1= weosh
oo(x) := xcosh —.
g x
Then, the coefficient of —i— of g, 1 () is larger than that
of g,_y,_1_(z) and smaller than that of g (x) for n > 2
and 2 < k < n. Thus, we see that go(z) > g, 1(z) >
g1, (@) and gl (2) < gL () <gl,_, o (2)fora >0,

Moreover g, 1(x) — goo() as n — oo. Consequently we

have that if we let £, 1 be the zero point of ¢/ , (r) and
put 7, 1 := g, 1(§, 1 ) then
§11 < 52,% < 53,% < <oo
M1 <71 <731 <- <Too
and
lim &, 1 — oo, lim 7, 1 — 7)o
n—oo 'n n—o0 'n
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4. PROOF OF THEOREM 1

As is seen in the previous section, Formula (3.2) is indi-
cated.

For m € NU{0} and y € R, let (y),, be the Pochhammer
symbol, that is, (y)o := 1 and for m € N

m—1

W)m =[] w+9.
i=0
Then, we see that
(n+k-1! (=" () (—n)
(n—k)! n ’
1
(2R = k- 45 (D),
and
= (n+k—1)!
— (n— k)l - (2k)1 - n2k—1 . g26—1
o 1
= i i) @Y
For £,/ >0, a > 0, and (z9,21,...,Zn),
Dpt1e(xo, 21, ..., 2Tn,a)

and

D10 (0 )0z, (0 )0)x1, ..., (0 )0)xn, (£ /E)a)

are homethetic to each other. Consequently, we have

_¢ ¢
*Z,gn,é’ KI )

Gne(x) =nl - Gn, L (i) .

nt

In,e(T)

and if ¢/ = %, then

Substituting -7 instead of x in Formula (4.1), we propose

that
k
7\ 2
For «, B, € R, where v # 0, —1,—2, ..., the series
Fla, 8,7 2)
ZO (’v

is called a Gauss hypergeometric function.
Since (—n); =0 for k > n+ 1, we see
n k
Z (i -(=n)x [ (L 2
(1/2)g - k! 2x
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for z > 0.
Let T,, for n € NU {0} be the Chebyshev polynomial,

that is,
To(z):=1, Ti(z):==z

and for n > 2,
Th(z) := 22T, 1(2) — Th—2(2).

Then, it is well-known that F(n,—n, 3;2) = T,(1 — 2z)
(See 15.4.3 in [1].). Moreover, it is also well-known that

1
F(TL, —n, 57 _22)
1

=3 ([(1 +22)7 + 22 4 [(1+2%)7 — z]2n> .
(See 15.1.11 in [1].)

Lemma 1. Forn > 2, we see that
T2 (z) — Th(2)Tp_2(z) = 1 — 22

Proof. In the case of n = 2, we obtain this by direct cal-
culation. For n > 3, by the recursion of the Chebyshev
polynomials,

T3 () = To(2) To—2(2)
=T2 (x) — (20T _1(x) — Tpr_a()) Tp_2(x)
=T2 (2) + Tp1(x) (Tn_1(z) — 20T, _o(x))
=Ty 5(x) = Tu-1Tn-3(2)

n—

= T{(x) — To(x)Ta(x)
=1-2z° O

Proof of Theorem 1. Recall that the recursion formula
which g, ¢(z) should satisfy is

£(gn1,0(2))* + 2090 1.0(2) + Lon2.4(2)
4gn72,f(‘r)gn71,€(‘r) - £2

gné( )

for n > 2. (See the last paragraph of Section 2.) Since

62
gO,é(x) = x1y (1 + 2$2)

and
£2
91,2(33) =T <1 + 22)

Z

it suffices to prove that xT), ( ) satisfies the same

recursion for n > 2. Rearranging the recursion, the formula
we should show is

42Ty (X) (Tr_y (X) = T (X) Tz (X))

+ 02 (T, (X) + 2T, -1 (X) + T (X)) = 0,
(4.2)
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where X =1+ %. Lemma 1 implies

2
Tn 1

(X)—-T,(X)Th—2(X)=1 — X2

A
= (Gt 1)
and the left side of Formula (4.2) is equal to

(T (X) = 2XT, 1(X) +Th_o(X)) =0.

Given these facts, we obtain

Z o ( <2€w>z>k

n

gné

or
n-(n+k—1) 02

(n— k)l (2k)! - 2261

gn,e (.’E) =
k=0

Since this function is positive and convex for > 0, and
lim g, ¢(z) = lim g, ¢(x) = oo,
x—0 r—00

there is a unique zero point &, ¢ of g, ,(x). Moreover, if we
put 7y.¢ = gne(€nr), then 0, ¢ is the minimum of g, ..
The role of 1, ¢ and the minimality of

2D, e(Ta,p 0% 91,4(56&#”7@)7 - 7gn71,f(xai’n1z)7 a)

are obtained similarly as in the case n = 1,2, 3. O

Remark 2. The coefficient of % r of gne(x) is larger
than that of gp,—1,¢ for 2 < k < n. Thus, gne(r) >
gn—1,¢(z) and Q;L,e(@ < gn—1,4(x) for z > 0. This implies
that

Mo <M < <Tpe<---

and

1,0 <& < - <Epp<--

As is seen in Remark 1, we have

lim €, 1 = 0.83355-

n—o0

and lim 7, » =1.5088---.
n—oo n

Thus, by using the fact that

Dz,n(x07x17 oo 7xn)
is homothetic to
A v 4
De’,n(zm()a ?.’I]17 ey Z:En)

for £,¢/ > 0, we see that &,p = (/0 )& and n, e =
(/€ )y, and that

lim @

n—oo N

><€11mM
n—oo M

= 0.83355- = 1.5088 .- x £.
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5. THE HESSIAN MATRICES

The purpose of this section is to investigate the Hessian
matrix of the function

Sa,n,[(x()vxlax% e 7xn71)

at
(go(x;nyz)a 91 (x;n,é)agQ(‘r:n,é), s agn—l(x:,n,Z))) )

where we should remark that gn(mzme) = a. For inves-
tigating the positive definiteness of the matrix, we may
assume that ¢ = 1 without loss of generality. Thus, we put
S(s,t) == 51(s,t) = (s+t)\/(t —8)?2+ 1, gp(z) == gr1(x),

+ . 7t
and z, ,, ==z, , . Then, we have

8275(5 )_(SS—t)—2(t—s)3
9s2 7 (1 —s)2 4+ 1)/
(st —20t—s) ((t—s)?+1)
S (emeen
5275(8 )_(3t—s)+2(t—s)3
N
:(s—|—t)—|—2(t—s)((t—s)2—|—1)
((t=sp2+ 1
and
0%S %S s+t

858t(8’t> B 6t85(s’t) ((t—s)2 +1)%?

By using a theorem in the hypergeometric function the-
ory, we see

1 1 2k
9u(w) = (2/2)x ( uw%v+%j

: ) 2k
1 SN2
+< +(2:v) 2:10)

If we put
1 1
A=A =4/14+(=)2+ —
(0) = 14 (o) + 5
then
1 1 1
14 ()2 — — —
+(2x) 2z A
and
. 1
e
Now, we put for i € Z,
=)= Ak, Bi= )= AT
o; = ai(x) = o0 Bi=Piz) = T

Then, we easily check that

aj=a_;, Bi=-P-y a =2, Bo=0,
oo = Qiqj + oy,  Bifj = iy — oy,
B +4=0f, aifi=pa
and
gr(z) = %-
25

Moreover we have

261
2
_ (5%151) 1
265
_ <a2k—1 )2
—5 ) -
From the above, we can write simply

028

(9s(2) = gr—1(2))* + 1 = <W>2 +1

2201 — qap—1 + Qap—3)

@(‘gkfltf),gk(x)) = ﬂlagk,1

%S _ 2(201 + qap—1 — Qap-3)
oz (gk-1(x), gk (x)) = Bia2,
and
P8 (ger (@), 90(a)) =
D50t 9k—1\T), gr\x)) = 510@_1.

Next, we consider g (z). Since

3(-5m) 1

_ BiA
A+ L
_piA

)
aq

we see that for ¢ € N,

of = A/GATTY — iATIY)

B L
= —— AZ _—
Qa7 < Az)

838

aq

Thus, together with 1/8; = x, we see that

/
2 (o 5)
aragy, — 2k Bag
20[1
(1 — Qk)ang + (]. + 2k)a2k_1
20(1

9 (x) =

)

)
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Now we consider, for n € N and = > 0, the Hessian
matrix H,(x) of

Sgn(m),n,1(9507$1,$2, s 7xn71)

at (x,91(x),92(x), ..., gn-1(x)).

Lemma 2. We have
o \" gn(T)
det H,(z) =4" — | —25—.
W= (5) at

Proof. We prove this by induction. In the cases where n =

1,2, we obtain the lemma by direct calculation. We assume

that the lemma holds for 1,2,...,n — 1, here n > 3.
Recalling that

Sgn(x),n,l(wO»xlax% s 71'7171)
= S(wo,z1) + S(w1,22) + -+~
+ S(xn—% xn—l) + S(xn—lvgn(x))7

H,(z) = (hi;)ij=12,.n is expressed as
928
hii= @(Qo(x)vgl(x))v
928 0%S

hii= ﬁ(gz‘—z(ﬂ«")agi—l(ﬂﬁ)) + @(gi—l(x)ﬂz‘(ﬂﬁ))

fori=2,3,...,n,

hiiv1 = hiv1,i = %(Qi—l(iﬂ),gi(@)
fori=1,2,...,n, and
hi;=0
if |i — j| > 2. Consequently, we have
det H, ()
=det H,_1(z)

9 2
X (égtf(gn2(x)vgnl(x)) + gsf(gnl(x)’gn(x))>

5 2
Soar 0n-2(2)na(a)

Omitting the middle formulas, we see

%8 %S

W(gn72(x>’gn71(x)) + @(gnfl(x)’gn(x))

2201 + up—5 + un—7) | 2201 — a1 + Qap—3)
Bra3, s frag, 4

. 4(20[4n_3 + 204y _5 — a5 + a3z + 40[1)

2 2
Bras, 505, 4

—det Hy,_o(x) x (

)

and from the induction hypothesis,

det H,,—1(x)

X (68{5(9”—2(37)7971—1(3")) + g;(g"_l(x)’gn(x)))

(" 471 %2

B (51) ajag 03, 505, 303, 01
X ((3—=2n)agn—1+ (2n — 1)ag,—3)
X (20t4n—3 + 204n—5 — a5 + a3 + 4ay).
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Moreover,

((3—=2n)asy—1+ (2n — 1)ag,—3)
X (20un—3 + 204n—5 — a5 + az + 4aq)
=2(3 — 2n)agn—4a + 4aen—6 +2(2n — 1)agn—s
+ (2n — 3)agpta — 4(n — Dagpis + (9 — 2n)az,
+ 12a9,-2 + (2n + 5)agn—a + 4(n — Dagn—¢
— (2n — 1)ag,-s.

Similarly,
2S 2
det ang(x) X (asat(gnQ(x)vgnl(x))>

-1 _
(a1>n 4m 1 X 2

=\ 75 2. 2 2 1

B QrQ3 - Qg 50, 30

X ((5 — 277,)0[2n,2 + 20[271,4 + (Zn — 3>a2n76) s

and thus

det H,(x)
a\"! 4n—1 x 2
- (31) afaj a3, 505, 305, i1
x {(=2n+ Dagn—a + 206n—6 + (2n + Dagn—s
+ (—4n 4 2)agnta + dag, + (An + 2)ag,—o
+ (2n+ Dagp—a + 2a2,-6 + (—2n + 1)ag,—s}.

On the other hand,

g;l(l’) _ (1 — 2n)04271+12+ (271 —+ ].)Oégn_l7
aq

and by direct calculation, we obtain that

103,53 ((1 = 2n)agny1 + (2n + Vag, 1)
= (=2n+ 1)agn—4 + 206n—6 + (2n + 1)agn—s
+ (—4n + 2)agn 2 + das, + (An + 2)ag,—o
+ (2n+ Dagp—a +2a2,—6 + (—2n + 1)ag,—s.

This completes the proof. O

6. PROOF OF THEOREM 2

The following lemma is well-known.

Lemma 3. A symmetric n x n matric A = (a;j)ij=1,..n
18 positive definite if and only if det Ay > 0 for any k =
1,27‘..,TL, where Ak = (aij)iyjzl’g 77777 k-

Proof of Theorem 2. Lemma 2 implies that if x > &, 1,
then det H,,(x) > 0. Moreover, as is seen in Remark 2,
§n71 > fn_171 > e > 5171 and thus if z > §n71, then
det Hi(x) > 0for k =1,2,...,n. Together with Lemma 3,
we see that Hy(z} ;) is positive definite and

2D7171(x;_,n,1)7glf(xctn,l)’ s 7gn—17£($;—,n,1)7 &)

is stable for a > 7y, 1. O
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