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Abstract. The catenary is the curve which a hanging chain forms, that is, mathematically, the
graph of the function t 7→ c cosh t

c
for a constant c > 0. The study of catenaries is applied to the

design of arches and suspension bridges. The surface of revolution generated by a catenary is called
a catenoid. It is well-known that a catenoid is a minimal surface and the shape which a soap film
between two parallel circles forms. In this article, we consider the approximation of a catenoid by
combinations of some truncated cones keeping the minimality in a certain sense. In investigating
the minimal combinations, the theory of the Gauss hypergeometric functions plays an important
role.
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1. Introduction

It is interesting to approximate a surface by good surfaces
from an industrial point of view. In this article, we consider
the approximation of a catenoid bounded by two circles of
the same radii by a sequence of piecewise truncated conical
minimal surfaces.
Throughout this article, a truncated cone means a right

circular cone with its apex cut off by a plane parallel to the
cone base.
For x0, x1 > 0 and ℓ > 0, let D1,ℓ(x0, x1) be the trun-

cated cone such that the radii of two circles of it are x0

and x1, and its height is ℓ. Here, we do not consider the
interior of the two circles of radii x0 and x1 of D1,ℓ(x0, x1).
Putting

S1,ℓ(x0, x1) := (x0 + x1)
√
(x1 − x0)2 + ℓ2,

the area of D1,ℓ(x0, x1) is equal to π · S1,ℓ(x0, x1).
For x0, x1, x2 > 0 and ℓ > 0, let D2,ℓ(x0, x1, x2)

be the figure consisting of the union of D1,ℓ(x0, x1) and
D1,ℓ(x1, x2) attached along the circle of radius x1. Sim-
ilarly, for n ≥ 3, we define Dn,ℓ(x0, x1, . . . , xn−1, xn) in-
ductively as the union of Dn−1,ℓ(x0, x1, . . . , xn−1) and
D1,ℓ(xn−1, xn) attached along the circle of radius xn−1.
Dn,ℓ(x0, x2, . . . , xn) consists of n truncated cones and is
called a piecewise truncated conical surface with length
(n; ℓ) or simply a PTC surface with L-(n; ℓ) by definition.
Dn,ℓ(x0, x1, . . . , xn) has the boundary consisting of two cir-
cles of radii x0 and xn, and its area is equal to

π
n∑

i=1

S1,ℓ(xi−1, xi).

We put

Sn.ℓ(x0, x1, . . . , xn) :=

n∑
i=1

S1,ℓ(xi−1, xi).

For arbitrary fixed a, b > 0 and n ∈ N,

Dn+2,ℓ(a, x0, x1, . . . , xn, b)

is called a PTC surface with boundary condition (a, b) and
length (n+2; ℓ) or simply BCL-(a, b;n+2; ℓ). A PTC sur-

face Dn+2,ℓ(a, x
(0)
0 , x

(0)
1 , . . . , x

(0)
n , b) with BCL-(a, b;n+2; ℓ)

is said to be minimal by definition if
(
x
(0)
0 , x

(0)
1 , . . . , x

(0)
s

)
is a critical point of the function

(x0, x1, . . . , xn) 7→ Sn+2,ℓ(a, x0, x1, . . . , xn, b).

Moreover a PTC minimal surface

Dn+2,ℓ(a, x
(0)
0 , x

(0)
1 , . . . , x(0)

n , b)

with BCL-(a, b;n+2; ℓ) is said to be stable if and only if the
Hessian matrix of the above function is positive definite at(
x
(0)
0 , x

(0)
1 , . . . , x

(0)
n

)
.

Putting

2Dn,ℓ(x0, x1, . . . , xn)

:= D2n,ℓ(xn, xn−1, . . . , x1, x0, x1, . . . , xn−1, xn),

2Dn,ℓ(x0, x1, . . . , xn−1, a) is a PTC surface with BCL-
(a, a; 2n; ℓ) for arbitrary fixed a > 0. We put

S̃a,n,ℓ(x0, x1, . . . , xn−1) := Sn,ℓ(x0, x1, . . . , xn−1, a).
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If
(
x
(0)
0 , x

(0)
1 , . . . , x

(0)
n−1

)
is a critical point of S̃a,n,ℓ,

then 2Dn,ℓ(x
(0)
0 , x

(0)
1 , . . . , x

(0)
n−1, a) is minimal with BCL-

(a, a;n + 2; ℓ). Moreover, if the Hessian matrix of S̃a,n,ℓ

is positive definite there, then 2Dn,ℓ(x
(0)
0 , x

(0)
1 , . . . , x

(0)
n−1, a)

is stable.
Now, we introduce the main results.

Theorem 1. For n ∈ N and ℓ > 0, there are an explicit
function gn,ℓ(x) and a positive number ηn,ℓ > 0 satisfying
the following:

(1) If a > ηn,ℓ, then the equation gn,ℓ(x)− a = 0 has two
positive solutions x±

a,n,ℓ with x−
a,n,ℓ < x+

a,n,ℓ.

(2) We see that

2Dn,ℓ(xa,n,ℓ± , g1,ℓ(x
±
a,n,ℓ), . . . , gn−1,ℓ(x

±
a,n,ℓ), a)

are PTC minimal surfaces with BCL-(a, a; 2n; ℓ).

Moreover,

gn,ℓ(x) = xTn

(
1 +

ℓ2

2x2

)
,

where Tn is the (first kind) Chebyshev polynomial.

Theorem 2. Under the same situation as Theorem 1,

2Dn,ℓ(xa,n,ℓ+ , g1,ℓ(x
+
a,n,ℓ), . . . , gn−1,ℓ(x

+
a,n,ℓ), a)

is stable.

2. The cases n = 1, 2, 3

In this section we see Theorems 1 and 2 in the cases where
n = 1, 2, 3.

2.1. The case n = 1

For a > 0 and ℓ > 0, we consider the critical points of the
function

S̃a,1,ℓ(x0) := S1,ℓ(x0, a) = (x0 + a)
√
(a− x0)2 + l2.

Since
dS̃a,1,ℓ

dx0
=

2x2
0 − 2ax0 + ℓ2√
(a− x0)2 + ℓ2

,

if a >
√
2ℓ =: η1,ℓ, then there are two critical points

(a±
√
a2 − 2ℓ2)/2

of S̃a,1,ℓ(x0). We put

x+
a,1,ℓ :=

a+
√
a2 − 2ℓ2

2
, x−

a,1,ℓ :=
a−

√
a2 − 2ℓ2

2
.

Then, since

a = x+
a,1,ℓ +

ℓ2

2x+
a,1,ℓ

= x−
a,1,ℓ +

ℓ2

2x−
a,1,ℓ

,

if we put

g1,ℓ(x) := x+
ℓ2

2x

for x > 0, then
{x±

a,1,ℓ} = g−1
1,ℓ (a)

for a > η1,ℓ. In other words, a positive number x is a

critical point of S̃g1,ℓ(x),1,ℓ(x0).
We remark that g1(x) takes the minimum η1,ℓ at x =

ℓ/
√
2, that is, g′1,ℓ(ℓ/

√
2) = 0 and g1,ℓ(ℓ/

√
2) = η1,ℓ. Thus,

putting ξ1,ℓ := ℓ/
√
2,

x+
a,1,ℓ > ξ1,ℓ > x−

a,1,ℓ

for a > η1,ℓ.
Moreover, if we put for x > 0, a := g1,ℓ(x),

H1,ℓ(x) :=
d2S̃a,1,ℓ

dx2
0

(x),

and
detH1,ℓ(x) := H1,ℓ(x)

itself, then

detH1(x) =
ℓ2(3x− a) + 2(x− a)3

((a− x)2 + ℓ2)3/2

=
ℓ2(3x− (x+ ℓ2

2x )) + 2(x− (x+ ℓ2

2x ))
3

((a− x)2 + ℓ2)3/2

=
ℓ2(2x2 − ℓ2)(4x2 + 1)

4x3((a− x)2 + ℓ2)3/2

=
ℓ2(4x2 + 1)g′1,ℓ(x)

2x((a− x)2 + ℓ2)3/2

=
4x2g′1,ℓ(x)

ℓ(4x2 + ℓ2)1/2
.

Together with the behavior of g′1,ℓ(x), this formula means

that for a > η1,ℓ, S̃a,1,ℓ(x0) takes the local minimum at
x+
a,1,ℓ because g1,ℓ(x

+
a,1,ℓ) > 0.

2.2. The case n = 2

For a > 0 and ℓ > 0, we consider the critical points of the
function S̃a,2,ℓ(x0, x1) := S1,ℓ(x0, x1) + S1,ℓ(x1, a), that is,
we consider a point (x0, x1) satisfying

∂S̃a,2,ℓ

∂x0
(x0, x1) =

∂S̃a,2,ℓ

∂x1
(x0, x1) = 0.

By the case where n = 1 and the formula

∂S̃a,2,ℓ

∂x0
(x0, x1) = 0,

we see that x1 = g1,ℓ(x0). Moreover,

0 =
∂S̃a,2,ℓ

∂x1
(x0, x1)

=
2x2

1 − 2x0x1 + ℓ2√
(x1 − x0)2 + ℓ2

+
2x2

1 − 2ax1 + ℓ2√
(a− x1)2 + ℓ2

(2.1)
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implies that

0 = (2x2
1 − 2x0x1 + ℓ2)2((a− x1)

2 + ℓ2)

− (2x2
1 − 2ax1 + ℓ2)2((x1 − x0)

2 + ℓ2)

= ℓ2(a− x0)(4x
3
1 − 4ax0x1 + 2ℓ2x1 + ℓ2x0 + aℓ2).

Here, if a = x0, then Formula (2.1) does not hold and so
we have

(ℓ2 − 4x0x1)a+ 4x3
1 + 2ℓ2x1 + ℓ2x0 = 0,

that is,

a =
4x3

1 + 2ℓ2x1 + ℓ2x0

4x0x1 − ℓ2

=
4 (g1,ℓ(x0))

3
+ 2ℓ2g1,ℓ(x0) + ℓ2x0

4x0g1,ℓ(x0)− ℓ2

= x0 +
2ℓ2

x0
+

ℓ4

2x3
0

,

where we can check that in this case, Formula (2.1) holds.
If we put

g2,ℓ(x) := x+
2ℓ2

x
+

ℓ4

2x3
,

then g2,ℓ(x) is positive, convex in (0,∞), and

lim
x→0

g2,ℓ(x) = lim
x→∞

g2,ℓ(x) = ∞

and thus, it takes the unique minimal value η2,ℓ > 0 at
a point ξ2,ℓ > 0. Hence, if a > η2,ℓ, then there are two
solutions x±

a,2,ℓ of g2,ℓ(x) = a, where x−
a,2,ℓ < ξ2,ℓ < x+

a,2,ℓ.
Consequently, if a > η2,ℓ, then there are two critical points(
x±
a,2,ℓ, g1,ℓ

(
x±
a,2,ℓ

))
of S̃a,2,ℓ(x0, x1); if a = η2,ℓ, only one

critical point (ξ2,ℓ, g1,ℓ(ξ2,ℓ)); and if a < η2,ℓ, there is no
critical point.
We should remark that since g′1,ℓ(x) > g′2,ℓ(x) for x > 0,

ξ1,ℓ < ξ2,ℓ. By numeric calculations we see that ξ2,ℓ ≈
1.6066ℓ and η2,ℓ ≈ 2.9720ℓ.
Seeing the above argument in terms of x0, we have that

for x > 0, if we put a := g2,ℓ(x), then (x, g1,ℓ(x)) is a

critical point of S̃a,ℓ(x0, x1).
Next, for x > 0, putting a = g2,ℓ(x), we investigate the

Hessian matrix

H2,ℓ(x) :=

∂2S̃a,2,ℓ

∂x2
0

(x, g1,ℓ(x))
∂2S̃a,2,ℓ

∂x0∂x1
(x, g1,ℓ(x))

∂2S̃a,2,ℓ

∂x0∂x1
(x, g1,ℓ(x))

∂2S̃a,2,ℓ

∂x2
1

(x, g1,ℓ(x))


of S̃a,2,ℓ(x0, x1) at (x, g1,ℓ(x)).
From this point on, we put, for ℓ > 0 and s, t > 0,

Sℓ(s, t) := (s+ t)
√
(t− s)2 + ℓ2 (= S1,ℓ(s, t)).

Then, we see

∂2S̃a,2,ℓ

∂x2
0

(x, g1,ℓ(x)) =
∂2Sℓ

∂s2
(x, g1,ℓ(x)),

∂2S̃a,2,ℓ

∂x0∂x1
(x, g1,ℓ(x)) =

∂2Sℓ

∂s∂t
(x, g1,ℓ(x)),

and

∂2S̃a,2,ℓ

∂x2
1

(x, g1,ℓ(x)) =
∂2Sℓ

∂t2
(x, g1,ℓ(x))

+
∂2Sℓ

∂s2
(g1,ℓ(x), g2,ℓ(x)).

Then by a direct but long calculation using

(g2,ℓ(x)− g1,ℓ(x))
2
+ℓ2 =

(x2 + ℓ2)2

x4

(
(g1,ℓ(x)− x)

2
+ ℓ2

)
,

we see that the determinant detH2,ℓ(x) of H2,ℓ(x) satisfies

detH2,ℓ(x) =
16x8

(
1− 2ℓ2

x2 − 3ℓ4

2x4

)
ℓ2(x2 + ℓ2)2(4x2 + l2)

=
16x8g′2,ℓ(x)

ℓ2(x2 + ℓ2)2(4x2 + l2)
.

Thus, if x > ξ2,ℓ, then detH2,ℓ(x) > 0. Moreover ξ2,ℓ > ξ1,ℓ
implies that if x > ξ2,ℓ, then x > ξ1,ℓ and

∂2S̃a,2,ℓ

∂x2
0

(x, g1,ℓ(x)) =
∂2Sℓ

∂s2
(x, g1,ℓ(x)) = H1,ℓ(x) > 0

from the case where n = 1. This implies that H2,ℓ(x) is

positive definite at
(
x+
a,2,ℓ, g1,ℓ(x

+
a,2,ℓ)

)
if a > η2,ℓ and

2D2,ℓ(x
+
a,2,ℓ, g1,ℓ(x

+
a,2,ℓ), a)

is a stable PTC minimal surface with BCL-(a, a; 4; ℓ).

2.3. The case n = 3

We consider the critical points of

S̃a,3,ℓ(x0, x1, x2) := Sℓ(x0, x1) + Sℓ(x1, x2) + Sℓ(x2, a)

for a > 0. If (x0, x1, x2) is a critical point of S̃a,3,ℓ, then as
in the case where n = 2, we have

x1 = g1,ℓ(x0),

x2 = g2,ℓ(x0),

and

a =
4x3

2 + 2ℓ2x2 + ℓ2x1

4x1x2 − ℓ2

=
4 (g2,ℓ(x0))

3
+ 2ℓ2g2,ℓ(x0) + ℓ2g1,ℓ(x0)

4g1,ℓ(x0)g2,ℓ(x0)− ℓ2

= x0 +
9ℓ2

2x0
+

3ℓ4

x3
0

+
ℓ6

2x5
0

.

Putting

g3,ℓ(x) := x+
9ℓ2

2x
+

3ℓ4

x3
+

ℓ6

2x5
,

similarly as in the case n = 2, we see that there is
ξ3,ℓ > 0 with g′3,ℓ(ξ3,ℓ) = 0 such that if a > η3,ℓ :=
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g3,ℓ(ξ3,ℓ), then the equation g3,ℓ(x) = a has two so-
lutions x±

a,3,ℓ with x+
a,3,ℓ > ξ3,ℓ > x−

a,3,ℓ. Moreover(
x±
a,3,ℓ, g1,ℓ(x

±
a,3,ℓ), g2,ℓ(x

±
a,3,ℓ)

)
are the critical points of

S̃a,3,ℓ(x0, x1, x2). The same argument as in the case n = 2
implies ξ3,ℓ > ξ2,ℓ.

We define H3,ℓ(x) for x > 0 as the Hessian matrix of

S̃a,3,ℓ at (x, g1,ℓ(x), g2,ℓ(x)), where a := g3,ℓ(x). Then

∂2S̃a,3,ℓ

∂x0∂x2
= 0

implies

detH3,ℓ(x) =
∂2S̃a,3,ℓ

∂x2
2

× detH2,ℓ(x)

−

(
∂2S̃a,3,ℓ

∂x1∂x2

)2

× detH1,ℓ(x).

Making a long calculation (with the help of a computer),
we see that

detH3,ℓ(x) =
64x18g′3,ℓ(x)

ℓ3(x2 + ℓ2)2(x4 + 3ℓ2x2 + ℓ4)2(4x2 + ℓ2)3/2
.

Thus, by ξ3,ℓ > ξ2,ℓ > ξ1,ℓ, if x > ξ3,ℓ, then detH3,ℓ(x) >
0, detH2,ℓ(x) > 0, and detH1,ℓ(x) > 0 and as is well-known
in linear algebra, this implies H3,ℓ is positive definite. (See
Lemma 3 described in Section 6.) Consequently,

2D3,ℓ

(
x+
a,3,ℓ, g1,ℓ(x

+
a,3,ℓ), g2,ℓ(x

+
a,3,ℓ), a

)
is stable.

The calculation of the determinant of Hn(x) is men-
tioned later.

Repeating the above argument, we see that g4,ℓ(x) and
g5,ℓ(x) should be defined as

g4,ℓ(x) : =
4 (g3,ℓ(x))

3
+ 2ℓ2g3,ℓ(x) + ℓ2g2,ℓ(x)

4g2,ℓ(x)g3,ℓ(x)− ℓ2

= x+
8ℓ2

x
+

10ℓ4

x3
+

4ℓ6

x5
+

ℓ8

2x7
,

g5,ℓ(x) : =
4 (g4,ℓ(x))

3
+ 2ℓ2g4,ℓ(x) + ℓ2g3,ℓ(x)

4g3,ℓ(x)g4,ℓ(x)− ℓ2

= x+
25ℓ2

2x
+

25ℓ4

x3
+

35ℓ6

2x5
+

5ℓ8

x7
+

l10

2x9
,

and in general,

gn,ℓ(x) :=
4 (gn−1,ℓ(x))

3
+ 2ℓ2gn−1,ℓ(x) + ℓ2gn−2,ℓ(x)

4gn−2,ℓ(x)gn−1,ℓ(x)− ℓ2

for n ≥ 2, here g0,ℓ(x) := x.

3. Catenoids and approximations of
them

We put for c > 0,

Cc(t) := c cosh

(
t

c

)
.

The curve (t, Cc(t)) is called a catenary. The function
c 7→ c cosh

(
1
c

)
is positive, convex and takes the unique

minimum η∞ := 1.5088 · · · at c = 0.83355 · · · =: ξ∞.
Thus, if a > η∞, there are two positive numbers c±a with

c−a < ξ∞ < c+a such that c±a cosh
(

1
c±a

)
= a.

The surface R(Cc) := (t, Cc(t) cos θ, Cc(t) sin θ) is called
a catenoid, which is known as a minimal surface of revolu-
tion, where “minimal” means “of mean curvature 0”. Let

Cc,1 be Cc|(−1,1). For a > η∞, R
(
Cc±a ,1

)
have the same

boundary. The area of R
(
Cc+a ,1

)
is minimal in the set of

surfaces having the same boundary and that of R
(
Cc−a ,1

)
is not.
In the view of the previous section, if a > η∞, the se-

quence

2D1,1

(
x±
a,1,1, a

)
,

2D2, 12

(
x±
a,2, 12

, g1, 12

(
x±
a,2, 12

)
, a
)
,

2D3, 13

(
x±
a,3, 13

, g1, 13

(
x±
a,3, 13

)
, g2, 13

(
x±
a,3, 13

)
, a
)
,

...

might give an approximation of R
(
Cc±a ,1

)
as PTC minimal

surfaces, where the formula η∞ > ηn, 1
n
is proved later.

For example, if a = 2, then

x+
2,1,1 = 1.707 · · · ,

x+
2,2, 12

= 1.699 · · · , g1, 12 (1.699 · · · ) = 1.772 · · · ,

x+
2,3, 13

= 1.697 · · · , g1, 13 (1.697 · · · ) = 1.730 · · · ,

g2, 13 (1.697 · · · ) = 1.830 · · · , (3.1)

and thus,

2D1 (1.707 · · · , 2) ,
2D 1

2
(1.699 · · · , 1.772 · · · , 2) ,

2D 1
3
(1.697 · · · , 1.730 · · · , 1.830 · · · , 2) ,

...

might give an approximate of R
(
Cc+2 ,1

)
as PTC minimal

surfaces, here

c+2 = 1.696 · · · ,
c+2 = 1.696 · · · , Cc+2

(1/2) = 1.770 · · · ,

c+2 = 1.696 · · · , Cc+2
(1/3) = 1.729 · · · ,

Cc+2
(2/3) = 1.829 · · · .
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(Compare with (3.1).)

Referring to the expansion

c cosh(1/c) = c+
1

2c
+

1

4!c3
+

1

6!c5
+

1

8!c7
+ · · · ,

we change gn, 1
n
(x) for n = 2, 3, 4 as follows:

g2, 12 (x) = x+
1

2x
+

1

32x3

= x+
1

2x
+

1 · 3
22

· 1

4!x3

= x+
1

2x
+

3!

0! · 23
· 1

4!x3
,

g3, 13 (x) = x+
1

2x
+

1

27x3
+

1

1458x5

= x+
1

2x
+

2 · 4
32

· 1

4!x3
+

1 · 2 · 4 · 5
34

· 1

6!x5

= x+
1

2x
+

4!

1! · 33
· 1

4!x3
+

5!

0! · 35
· 1

6!x5
,

g4, 14 (x) = x+
1

2x
+

5

128x3
+

1

1024x5
+

1

131072x7

= x+
1

2x
+

3 · 5
42

· 1

4!x3
+

2 · 3 · 5 · 6
44

· 1

6!x5

+
1 · 2 · 3 · 5 · 6 · 7

46
· 1

8!x7

= x+
1

2x
+

5!

2! · 43
· 1

4!x3
+

6!

1! · 45
· 1

6!x5

+
7!

0! · 47
· 1

8!x7
.

Thus, it is indicated that

gn, 1
n
(x) =

n∑
k=0

(n+ k − 1)!

(n− k)! · (2k)! · n2k−1 · x2k−1
. (3.2)

In fact, we prove this formula in the next section. Assuming
this, we see the following remark.

Remark 1. We put

g∞(x) := x cosh
1

x
.

Then, the coefficient of 1
x2k−1 of gn, 1

n
(x) is larger than that

of gn−1, 1
n−1

(x) and smaller than that of g∞(x) for n ≥ 2

and 2 ≤ k ≤ n. Thus, we see that g∞(x) > gn, 1
n
(x) >

gn−1, 1
n−1

(x) and g′∞(x) < g′
n, 1

n

(x) < g′
n−1, 1

n−1

(x) for x > 0.

Moreover gn, 1
n
(x) → g∞(x) as n → ∞. Consequently we

have that if we let ξn, 1
n

be the zero point of g′
n, 1

n

(x) and

put ηn, 1
n
:= gn, 1

n
(ξn, 1

n
), then

ξ1,1 < ξ2, 12 < ξ3, 13 < · · · < ξ∞

η1,1 < η2, 12 < η3, 13 < · · · < η∞

and

lim
n→∞

ξn, 1
n
→ ξ∞, lim

n→∞
ηn, 1

n
→ η∞

4. Proof of Theorem 1

As is seen in the previous section, Formula (3.2) is indi-
cated.
For m ∈ N∪{0} and y ∈ R, let (y)m be the Pochhammer

symbol, that is, (y)0 := 1 and for m ∈ N

(y)m :=

m−1∏
i=0

(y + i).

Then, we see that

(n+ k − 1)!

(n− k)!
=

(−1)k · (n)k · (−n)k
n

,

(2k)! = k! · 4k · (1
2
)k,

and

n∑
k=0

(n+ k − 1)!

(n− k)! · (2k)! · n2k−1 · x2k−1

= x

n∑
k=0

(n)k · (−n)k
(1/2)k · k!

·
(
− 1

4(nx)2

)k

. (4.1)

For ℓ, ℓ′ > 0, a > 0, and (x0, x1, . . . , xn),

Dn+1,ℓ(x0, x1, . . . , xn, a)

and

Dn+1,ℓ′((ℓ
′/ℓ)x0, (ℓ

′/ℓ)x1, . . . , (ℓ
′/ℓ)xn, (ℓ

′/ℓ)a)

are homethetic to each other. Consequently, we have

gn,ℓ(x) =
ℓ

ℓ′
gn,ℓ′

(
ℓ′

ℓ
x

)
,

and if ℓ′ = 1
n , then

gn,ℓ(x) = nℓ · gn, 1
n

( x

nℓ

)
.

Substituting x
nℓ instead of x in Formula (4.1), we propose

that

gn,ℓ(x) = x
n∑

k=0

(n)k · (−n)k
(1/2)k · k!

·

(
−
(

ℓ

2x

)2
)k

.

For α, β, γ ∈ R, where γ ̸= 0,−1,−2, . . . , the series

F (α, β, γ; z) :=
∞∑
k=0

(α)k · (β)k
(γ)k · k!

zk

is called a Gauss hypergeometric function.
Since (−n)k = 0 for k ≥ n+ 1, we see

n∑
k=0

(n)k · (−n)k
(1/2)k · k!

·

(
−
(

ℓ

2x

)2
)k

= F

(
n,−n,

1

2
;−
(

ℓ

2x

)2
)
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for x > 0.

Let Tn for n ∈ N ∪ {0} be the Chebyshev polynomial,
that is,

T0(z) := 1, T1(z) := z

and for n ≥ 2,

Tn(z) := 2zTn−1(z)− Tn−2(z).

Then, it is well-known that F (n,−n, 1
2 ; z) = Tn(1 − 2z)

(See 15.4.3 in [1].). Moreover, it is also well-known that

F (n,−n,
1

2
;−z2)

=
1

2

(
[(1 + z2)

1
2 + z]2n + [(1 + z2)

1
2 − z]2n

)
.

(See 15.1.11 in [1].)

Lemma 1. For n ≥ 2, we see that

T 2
n−1(x)− Tn(x)Tn−2(x) = 1− x2.

Proof. In the case of n = 2, we obtain this by direct cal-
culation. For n ≥ 3, by the recursion of the Chebyshev
polynomials,

T 2
n−1(x)− Tn(x)Tn−2(x)

= T 2
n−1(x)− (2xTn−1(x)− Tn−2(x))Tn−2(x)

= T 2
n−2(x) + Tn−1(x) (Tn−1(x)− 2xTn−2(x))

= T 2
n−2(x)− Tn−1Tn−3(x)

...

= T 2
1 (x)− T0(x)T2(x)

= 1− x2.

Proof of Theorem 1. Recall that the recursion formula
which gn,ℓ(x) should satisfy is

gn,ℓ(x) :=
4 (gn−1,ℓ(x))

3
+ 2ℓ2gn−1,ℓ(x) + ℓ2gn−2,ℓ(x)

4gn−2,ℓ(x)gn−1,ℓ(x)− ℓ2

for n ≥ 2. (See the last paragraph of Section 2.) Since

g0,ℓ(x) = xT0

(
1 +

ℓ2

2x2

)
and

g1,ℓ(x) = xT1

(
1 +

ℓ2

2x2

)
,

it suffices to prove that xTn

(
1 + ℓ2

2x2

)
satisfies the same

recursion for n ≥ 2. Rearranging the recursion, the formula
we should show is

4x2Tn−1 (X)
(
T 2
n−1 (X)− Tn (X)Tn−2 (X)

)
+ ℓ2 (Tn (X) + 2Tn−1 (X) + Tn−2 (X)) = 0,

(4.2)

where X = 1 + ℓ2

2x2 . Lemma 1 implies

T 2
n−1 (X)− Tn (X)Tn−2 (X) = 1−X2

= −(
ℓ2

x2
+

ℓ4

4x4
),

and the left side of Formula (4.2) is equal to

ℓ2 (Tn(X)− 2XTn−1(X) + Tn−2(X)) = 0.

Given these facts, we obtain

gn,ℓ(x) = x

n∑
k=0

(n)k · (−n)k
(1/2)k · k!

·

(
−
(

ℓ

2x

)2
)k

or

gn,ℓ(x) =

n∑
k=0

n · (n+ k − 1)! · ℓ2k

(n− k)! · (2k)! · x2k−1
.

Since this function is positive and convex for x > 0, and

lim
x→0

gn,ℓ(x) = lim
x→∞

gn,ℓ(x) = ∞,

there is a unique zero point ξn,ℓ of g
′
n,ℓ(x). Moreover, if we

put ηn,ℓ := gn,ℓ(ξn,ℓ), then ηn,ℓ is the minimum of gn,ℓ.

The role of ηn,ℓ and the minimality of

2Dn,ℓ(xa,n,ℓ± , g1,ℓ(x
±
a,n,ℓ), . . . , gn−1,ℓ(x

±
a,n,ℓ), a)

are obtained similarly as in the case n = 1, 2, 3.

Remark 2. The coefficient of 1
x2k−1 of gn,ℓ(x) is larger

than that of gn−1,ℓ for 2 ≤ k ≤ n. Thus, gn,ℓ(x) >
gn−1,ℓ(x) and g′n,ℓ(x) < gn−1,ℓ(x) for x > 0. This implies
that

η1,ℓ < η2,ℓ < · · · < ηn,ℓ < · · ·

and

ξ1,ℓ < ξ2,ℓ < · · · < ξn,ℓ < · · · .

As is seen in Remark 1, we have

lim
n→∞

ξn, 1
n
= 0.83355 · · · and lim

n→∞
ηn, 1

n
= 1.5088 · · · .

Thus, by using the fact that

Dℓ,n(x0, x1, . . . , xn)

is homothetic to

Dℓ′,n(
ℓ′

ℓ
x0,

ℓ′

ℓ
x1, . . . ,

ℓ′

ℓ
xn)

for ℓ, ℓ′ > 0, we see that ξn,ℓ = (ℓ/ℓ′)ξn,ℓ′ and ηn,ℓ =
(ℓ/ℓ′)ηn,ℓ′ and that

lim
n→∞

ξn,ℓ
n

= 0.83355 · · · × ℓ, lim
n→∞

ηn,ℓ
n

= 1.5088 · · · × ℓ.
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5. The Hessian matrices

The purpose of this section is to investigate the Hessian
matrix of the function

S̃a,n,ℓ(x0, x1, x2, . . . , xn−1)

at (
g0(x

+
a,n,ℓ), g1(x

+
a,n,ℓ), g2(x

+
a,n,ℓ), . . . , gn−1(x

+
a,n,ℓ))

)
,

where we should remark that gn(x
+
a,n,ℓ) = a. For inves-

tigating the positive definiteness of the matrix, we may
assume that ℓ = 1 without loss of generality. Thus, we put
S(s, t) := S1(s, t) = (s+ t)

√
(t− s)2 + 1, gk(x) := gk,1(x),

and x+
a,n := x+

a,n,1. Then, we have

∂2S

∂s2
(s, t) =

(3s− t)− 2(t− s)3

((t− s)2 + 1)
3/2

=
(s+ t)− 2(t− s)

(
(t− s)2 + 1

)
((t− s)2 + 1)

3/2
,

∂2S

∂t2
(s, t) =

(3t− s) + 2(t− s)3

((t− s)2 + 1)
3/2

=
(s+ t) + 2(t− s)

(
(t− s)2 + 1

)
((t− s)2 + 1)

3/2
,

and

∂2S

∂s∂t
(s, t) =

∂2S

∂t∂s
(s, t) = − s+ t

((t− s)2 + 1)
3/2

.

By using a theorem in the hypergeometric function the-
ory, we see

gk(x) = (x/2)×

(√1 + (
1

2x
)2 +

1

2x

)2k

+

(√
1 + (

1

2x
)2 − 1

2x

)2k
 .

If we put

A = A(x) :=

√
1 + (

1

2x
)2 +

1

2x
,

then √
1 + (

1

2x
)2 − 1

2x
=

1

A

and

x =
1

A− 1
A

.

Now, we put for i ∈ Z,

αi = αi(x) := Ai +
1

Ai
, βi = βi(x) := Ai − 1

Ai
.

Then, we easily check that

αi = α−i, βi = −β−i, α0 = 2, β0 = 0,

αiαj = αi+j + αi−j , βiβj = αi+j − αi−j ,

β2
i + 4 = α2

i , αiβi = β2i,

and
gk(x) =

α2k

2β1
.

Moreover we have

(gk(x)− gk−1(x))
2
+ 1 =

(
α2k − α2k−2

2β1

)2

+ 1

=

(
β2k−1β1

2β1

)2

+ 1

=
(α2k−1

2

)2
.

From the above, we can write simply

∂2S

∂s2
(gk−1(x), gk(x)) =

2(2α1 − α4k−1 + α4k−3)

β1α2
2k−1

,

∂2S

∂t2
(gk−1(x), gk(x)) =

2(2α1 + α4k−1 − α4k−3)

β1α2
2k−1

,

and
∂2S

∂s∂t
(gk−1(x), gk(x)) =

−4α1

β1α2
2k−1

.

Next, we consider g′k(x). Since

A′ =
1
2x (−

1
2x2 )√

1 + ( 1
2x )

2
− 1

2x2

= −

√
1 + ( 1

2x )
2 + 1

2x

2x2
√
1 + ( 1

2x )
2

= − β2
1A

A+ 1
A

= −β2
1A

α1
,

we see that for i ∈ N,

α′
i = A′(iAi−1 − iA−i−1)

= − iβ2
1

α1

(
Ai − 1

Ai

)
= − iβ2

1βi

α1
.

Thus, together with 1/β1 = x, we see that

g′k(x) =
1

2

(
α2k +

α′
2k

β1

)
=

α1α2k − 2kβ1β2k

2α1

=
(1− 2k)α2k+1 + (1 + 2k)α2k−1

2α1
.
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Now we consider, for n ∈ N and x > 0, the Hessian
matrix Hn(x) of

S̃gn(x),n,1(x0, x1, x2, . . . , xn−1)

at (x, g1(x), g2(x), . . . , gn−1(x)).

Lemma 2. We have

detHn(x) = 4n
(
α1

β1

)n
g′n(x)

α2
1α

2
2 · · ·α2

2n−1

.

Proof. We prove this by induction. In the cases where n =
1, 2, we obtain the lemma by direct calculation. We assume
that the lemma holds for 1, 2, . . . , n− 1, here n ≥ 3.
Recalling that

S̃gn(x),n,1(x0, x1, x2, . . . , xn−1)

= S(x0, x1) + S(x1, x2) + · · ·
+ S(xn−2, xn−1) + S(xn−1, gn(x)),

Hn(x) = (hi,j)i,j=1,2,...,n is expressed as

h1,1 =
∂2S

∂s2
(g0(x), g1(x)),

hi,i =
∂2S

∂t2
(gi−2(x), gi−1(x)) +

∂2S

∂s2
(gi−1(x), gi(x))

for i = 2, 3, . . . , n,

hi,i+1 = hi+1,i =
∂2S

∂s∂t
(gi−1(x), gi(x))

for i = 1, 2, . . . , n, and

hi,j = 0

if |i− j| ≥ 2. Consequently, we have

detHn(x)

= detHn−1(x)

×
(
∂2S

∂t2
(gn−2(x), gn−1(x)) +

∂2S

∂s2
(gn−1(x), gn(x))

)
− detHn−2(x)×

(
∂2S

∂s∂t
(gn−2(x), gn−1(x))

)2

.

Omitting the middle formulas, we see

∂2S

∂t2
(gn−2(x), gn−1(x)) +

∂2S

∂s2
(gn−1(x), gn(x))

=
2(2α1 + α4n−5 + α4n−7)

β1α2
2n−3

+
2(2α1 − α4n−1 + α4n−3)

β1α2
2n−1

=
4(2α4n−3 + 2α4n−5 − α5 + α3 + 4α1)

β1α2
2n−3α

2
2n−1

,

and from the induction hypothesis,

detHn−1(x)

×
(
∂2S

∂t2
(gn−2(x), gn−1(x)) +

∂2S

∂s2
(gn−1(x), gn(x))

)
=

(
α1

β1

)n−1
4n−1 × 2

α2
1α

2
3 · · ·α2

2n−5α
4
2n−3α

2
2n−1α1

× ((3− 2n)α2n−1 + (2n− 1)α2n−3)

× (2α4n−3 + 2α4n−5 − α5 + α3 + 4α1).

Moreover,

((3− 2n)α2n−1 + (2n− 1)α2n−3)

× (2α4n−3 + 2α4n−5 − α5 + α3 + 4α1)

= 2(3− 2n)α6n−4 + 4α6n−6 + 2(2n− 1)α6n−8

+ (2n− 3)α2n+4 − 4(n− 1)α2n+2 + (9− 2n)α2n

+ 12α2n−2 + (2n+ 5)α2n−4 + 4(n− 1)α2n−6

− (2n− 1)α2n−8.

Similarly,

detHn−2(x)×
(

∂2S

∂s∂t
(gn−2(x), gn−1(x))

)2

=

(
α1

β1

)n−1
4n−1 × 2

α2
1α

2
3 · · ·α2

2n−5α
4
2n−3α1

× ((5− 2n)α2n−2 + 2α2n−4 + (2n− 3)α2n−6) ,

and thus

detHn(x)

=

(
α1

β1

)n−1
4n−1 × 2

α2
1α

2
3 · · ·α2

2n−5α
4
2n−3α

2
2n−1α1

× {(−2n+ 1)α6n−4 + 2α6n−6 + (2n+ 1)α6n−8

+ (−4n+ 2)α2n+2 + 4α2n + (4n+ 2)α2n−2

+ (2n+ 1)α2n−4 + 2α2n−6 + (−2n+ 1)α2n−8}.

On the other hand,

g′n(x) =
(1− 2n)α2n+1 + (2n+ 1)α2n−1

2α1
,

and by direct calculation, we obtain that

α1α
2
2n−3 ((1− 2n)α2n+1 + (2n+ 1)α2n−1)

= (−2n+ 1)α6n−4 + 2α6n−6 + (2n+ 1)α6n−8

+ (−4n+ 2)α2n+2 + 4α2n + (4n+ 2)α2n−2

+ (2n+ 1)α2n−4 + 2α2n−6 + (−2n+ 1)α2n−8.

This completes the proof.

6. Proof of Theorem 2

The following lemma is well-known.

Lemma 3. A symmetric n × n matrix A = (aij)i,j=1,...n

is positive definite if and only if detAk > 0 for any k =
1, 2, . . . , n, where Ak := (aij)i,j=1,2,...,k.

Proof of Theorem 2. Lemma 2 implies that if x > ξn,1,
then detHn(x) > 0. Moreover, as is seen in Remark 2,
ξn,1 > ξn−1,1 > · · · > ξ1,1 and thus if x > ξn,1, then
detHk(x) > 0 for k = 1, 2, . . . , n. Together with Lemma 3,
we see that Hn(x

+
a,n,1) is positive definite and

2Dn,1(x
+
a,n,1), g1,ℓ(x

+
a,n,1), . . . , gn−1,ℓ(x

+
a,n,1), a)

is stable for a > ηn,1.
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