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Abstract. In 1999, Iwan Duursma defined the zeta polynomial for coding theory and formulated
an analogue of the Riemann hypothesis for coding theory. In this paper, we consider certain self-
reciprocal polynomials which generalize some zeta polynomials, and investigate whether the analogue
of the Riemann hypothesis holds for this generalization. We show that in some cases the analogue
of the Riemann hypothesis holds true, and conjecture that this is always the case.
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1. Introduction

A linear code of length n over a finite field Fq of q elements
is a subspace of Fn

q (the space of n-letter words) over Fq.
The minimum distance is denoted by d. The zeta functions
and zeta polynomials for linear codes were introduced by
Duursma [1] in 1999. The zeta function of a linear code is
defined as the function

Z(T ) =
P (T )

(1− T )(1− qT )

with a polynomial P (T ) of degree at least n − d. The
polynomial P (T ) is called the zeta polynomial of C . These
were defined as an analogue of congruence zeta functions of
algebraic curves and have many similar properties to those
of algebraic curves. The code C is said to be self-dual if C
is equal to C⊥, the orthogonal complement of C in Fn

q . For
zeta polynomials P (T ) of self-dual codes, it is well known
that the following functional equation holds:

P (T ) = P
( 1

qT

)
qgT 2g,

where 2g = n + 2 − 2d. This is analogous to the congru-
ence zeta functions of algebraic curves over finite fields.
Weil [11] moreover proved that all roots of the congruence
zeta functions have the absolute value 1/

√
q. This fact is

called the Riemann hypothesis analogue in the theory of
algebraic curves. Duursma conjectured in [4] that all zeta
polynomials of extremal self-dual codes would satisfy the
Riemann hypothesis analogue. Also, he has shown in [4]
that all extremal Type IV codes of length which is a mul-
tiple of 6 satisfy the Riemann hypothesis analogue. For
extremal Type I to III codes, the conjecture is still open.
We explain the types of codes and the notion “extremal”
in Section 2.
In this paper, we first show that zeta polynomials of all

extremal Type I (respectively Type III) codes whose length

is a multiple of 8 (respectively 12) can explicitly be written
as follows (the proof will be given in Section 3):

(Type I)

P (T )

= C
2m∑
k=0

(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

2j 3̇k−2j

j!(k − 2j)!(m− k + j)!
T k,

(Type III)

(1 + 3T 2)P (T )

= C
′
2m∑
k=0

(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

3k−j

j!(k − 2j)!(m− k + j)!
T k,

with some explicit constants C and C ′. With these expres-
sions in mind, we consider more generally, for a non-zero
real number α, the polynomial

P (m)
α (T )

:=
2m∑
k=0

(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

αj3k−2j

j!(k − 2j)!(m− k + j)!
T k.

For this, we conjecture the following.

Conjecture 1.1. If 2 ≤ |α| < ∞, all zeros of P
(m)
α (T )

have absolute value 1/
√
α.

Our main theorem proves this conjecture in a special
case.

Theorem 1.1. When α = 9
4 , the conjecture is true.

We prove this by showing that P
(m)
α (T ) can be written

in terms of a classical orthogonal polynomial.
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2. Definition

2.1. Zeta polynomials for coding theory

We give definitions of some terminologies associated with
zeta polynomials for coding theory.

Definition 2.1. If C is a code of length n, let Ak be the
number of codewords of weight k in C . The numbers A0,
A1, . . . , An, are called the weight distribution of C , and
the polynomial

n∑
k=0

Akx
n−kyk

is called the weight enumerator of C , which is denoted by
W (x, y). Here x and y are variables, and W (x, y) is a
homogeneous polynomial of degree n in x and y.

For a polynomial Z(T ) =
∑∞

k=0 akT
k, we denote by

[T k]Z(T ) the coefficient ak. In 1999, Duursma [1] defined
the zeta function for a linear code as follows.

Definition 2.2 (Duursma [1]). For any linear code C over
the field Fq of length n and the minimum distance d, there
exists a unique polynomial P (T ) of degree at most n − d
such that

[Tn−d]
P (T )

(1− T )(1− qT )
(xT + y(1− T ))n

=
W (x, y)− xn

q − 1
.

We call P (T ) the zeta polynomial of the linear code C , and
Z(T ) = P (T )/((1 − T )(1 − qT )) the zeta function of C .
When C is self-dual, P (T ) satisfies the function equation
described in the introduction.

We can formulate an analogue of the Riemann hypothesis
as follows.

Definition 2.3. The code C satisfies the Riemann hy-
pothesis analogue if all zeros of P (T ) have the same ab-
solute value 1/

√
q.

2.2. Extremal codes

A linear code over the field Fq of q elements has as main
parameters its length n, dimension k, and minimum dis-
tance d. The dual code C⊥ has length n, dimension n− k,
and we write its minimum distance d⊥. The code C is
said to self-dual code if C is equal to C⊥. A code is said
to be a divisible code if the Hamming distance between
any two words is divisible by an integer c greater than 1.
The Gleason-Prange theorem [5, 6] classifies the non-trivial
self-dual divisible codes into four cases

(Type I) (q, c) = (2, 2) 2 | n,
(Type II) (q, c) = (2, 4) 8 | n,
(Type III) (q, c) = (3, 3) 4 | n,
(Type IV) (q, c) = (4, 2) 2 | n.

In each case, the parameters are bounded by the Mallows-
Sloane upper bounds [7]

(Type I) d ≤ 2⌊n/8⌋+ 2,

(Type II) d ≤ 4⌊n/24⌋+ 4,

(Type III) d ≤ 3⌊n/12⌋+ 3,

(Type IV) d ≤ 2⌊n/6⌋+ 2.

A code of each type is called extremal if it attains the re-
spective Mallows-Sloane bound. For a homogeneous poly-
nomial p over the complex numbers, let p(D) be the dif-
ferential operator defined by replacing each occurrence
of variables xj in p by ∂/∂xj . For a code with ho-
mogeneous weight enumerator W (x, y), we seek pairs of
polynomials a(x, y) and p(x, y) such that a(x, y) divides
(p(x, y)(D))W (x, y).

Lemma 2.1 (Duursma [4]). For a self-dual divisible code
with weight enumerator W (x, y), let

(Type I) a(x, y) = (x3y − xy3)d−3,

p(x, y) = (x3y − xy3),

(Type II) a(x, y) = (x5y − xy5)d−5,

p(x, y) = (x5y − xy5),

(Type III) a(x, y) = (x3y − y4)d−4,

p(x, y) = (8x3y − y4),

(Type IV) a(x, y) = (x2y − y3)d−3,

p(x, y) = (9x2y − y3).

Then a(x, y) | (p(x, y)(D))W (x, y).

Suppose the length is a multiple of 8, 24, 12, 6 respec-
tively in Type I, II, III, IV cases. Then we have by [4]

(Type I) (x3y − xy3)(D)W (x, y)

= −(d− 2)3(n− d)Ad(x
3y − xy3)d−3,

(Type II) (x5y − xy5)(D)W (x, y)

= −(d− 4)5(n− d)Ad(x
5y − xy5)d−5,

(Type III) (8x3y − y4)(D)W (x, y)

= (−1)d−3(d− 3)4Ad(x
3y − y4)d−4,

(Type IV) (9x2y − y3)(D)W (x, y)

= (−1)d−2(d− 2)3Ad(x
2y − y3)d−3,

where the symbol (a)n means (a)n = a(a+1) · · · (a+n−1),
and Ad is the number of words which have exactly mini-
mum distance d components. Let P (T ) be the zeta poly-
nomial for the code and put

(Type I) Q(T ) = P (T ),

(Type II) Q(T ) = P (T )(1− 2T + 2T 2),

(Type III) Q(T ) = P (T )(1 + 3T 2),

(Type IV) Q(T ) = P (T )(1 + 2T ).

Theorem 2.1 (Duursma [4]). Write Q(T ) =
∑

k qkT
k.
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Then we have

(Type I)
2m∑
k=0

qk

(
4m

m+ k

)
T k

=
(n− d)(d− 2)3

(n− 3)4
Ad(1 + 3T + 2T 2)m,

(Type II)
4m∑
k=0

qk

(
6m

m+ k

)
T k

=
(n− d)(d− 4)5

(n− 5)6
Ad((1 + 3T + 2T 2)(1 + 2T + 2T 2))m,

(Type III)
2m∑
k=0

qk

(
4m

m+ k

)
T k

=
(d− 3)4
2(n− 3)4

Ad(1 + 3T + 3T 2)m,

(Type IV)
m∑

k=0

qk

(
3m

m+ k

)
T k

=
(d− 2)3
3(n− 2)3

Ad(1 + 2T )m.

3. Proof of theorem

3.1. Auxiliary polynomials

Let R(T ) =
∑2m

k=0 rkT
k be the monic polynomial such that

P ( T√
q ) = CR(T ) with a constant C. In the case of Type I

and the length being a multiple of 8, we obtain from The-
orem 2.1

2m∑
k=0

(
4m

m+ k

)
rkT

k =

(
4m

m

)
(1 +

3√
2
T + T 2)m.

By multinomial theorem, the coefficient on the left is given
by

(
4m

m+ k

)
rk =

(
4m

m

) ⌊i/2⌋∑
j=0

m!( 3√
2
)k−2j

j!(k − 2j)!(m− k + j)!
.

Therefore, we obtain

rk =
(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

( 3√
2
)k−2j

j!(k − 2j)!(m− k + j)!
.

Similarly, in the case of Type III length being a multiple of
12, we obtain

rk =
(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

(
√
3)k−2j

j!(k − 2j)!(m− k + j)!
.

We are thus naturally led to define the following polynomial

R
(m)
a (T ) which simultaneously generalizes the above two.

Definition 3.1. Let a be a non-zero real number, we de-

fine R
(m)
a (T ) as

R(m)
a (T )

:=
2m∑
k=0

(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

ak−2j

j!(k − 2j)!(m− k + j)!
T k.

The polynomial P
(m)
α (T ) in the introduction and

R
(m)
a (T ) are related with each other by

P (m)
α (

T√
α
) = R

(m)
3√
α

(T ). (1)

By numerical experiments, we conjecture the following:

Suppose 0 < |a| ≤ 3√
2
. Then, all zeros of R

(m)
a (T ) lie on

the unit circle for all m.

By the equation (1), the above conjecture is equivalent to

Conjecture 1.1. For m = 1, we have R
(1)
a (T ) = 1 + 2

3aT +

T 2. Zeros of R
(1)
a (T ) are

−2
3a±

√
4
9a

2 − 4

2
.

Thus, zeros of R
(1)
a (T ) lie on the unit circle whenever |a| ≤

3.
We checked whether the polynomials satisfy the conjec-

ture using Sturm’s theorem [9]. And we verified that the
polynomials of up to degree 100 and thousands of various
randomly chosen values of a including a =

√
3 and 3√

2

(which correspond to codes of Type I and III) satisfy the
conjecture.

3.2. Special case of the conjecture

In the case of a = 2, the polynomial R
(m)
2 is written explic-

itly as follows.

Proposition 3.1. When a = 2, the polynomial R
(m)
2 (T )

is given by

R
(m)
2 (T ) =

2m∑
k=0

(
m+k
k

)(
2m
k

)(
3m
k

) T k.

Proof.

R2(T )

=
2m∑
k=0

(3m− k)!(m+ k)!

(3m)!

⌊k/2⌋∑
j=0

ak−2j

j!(k − 2j)!(m− k + j)!
T k

=
2m∑
k=0

(
m+k
k

)(
3m
k

) ⌊k/2⌋∑
j=0

2k−2j

(
m

k − j

)(
k − j

j

)
T k

We show that
∑⌊k/2⌋

j=0 2k−2j
(

m
k−j

)(
k−j
j

)
=

(
2m
k

)
.
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If k is even, then by replacing k by 2k. We obtain

L.H.S. =

k∑
j=0

22k−2j

(
m

2k − j

)(
2k − j

j

)

=
k∑

j=0

22k−2j (m)!(2k − j)!

(2k − j)!(m− 2k + j)!(j)!(2k − 2j)!
,

and hence

m∑
k=0

m∑
j=0

22k−2j (m)!(2k − j)!

(2k − j)!(m− 2k + j)!(j)!(2k − 2j)!
X2k

======
k→k+j

m−j∑
k=0

m∑
j=0

22k
(m)!

(m− 2k − j)!(j)!(2k)!
X2k+2j

=
m∑
j=0

(m)!

(j)!(m− j)!
X2j

m−j∑
k=0

22k
(m− j)!

(2k)!(m− j − 2k)!
X2k

=

m∑
j=0

(
m

j

)
(X2)j

m−j∑
k=0

22k
(
m− j

2k

)
X2j

=
m∑
j=0

(
m

j

)
(X2)j(

1

2
(1 + 2X)m−j +

1

2
(1− 2X)m−j

=
1

2

m∑
j=0

(
m

j

)
X2j(1 + 2X)m−j +

(
m

j

)
X2j(1− 2X)m−j

=
1

2
((X2 + 2X + 1)m + (X2 − 2X + 1)m)

=
1

2
((X + 1)2m + (X − 1)2m)

=
2m∑
k=0

(
2m

2k

)
X2k.

Similarly, if k is odd, then by replacing k by 2k + 1. We
obtain

L.H.S. =

2m−1∑
k=0

(
2m

2k + 1

)
X2k+1.

Therefore, we see that
∑⌊k/2⌋

j=0 2k−2j
(

m
k−j

)(
k−j
j

)
=

(
2m
k

)
.

Using this we have

R
(m)
2 (T ) =

2m∑
k=0

(
m+k
k

)(
2m
k

)(
3m
k

) T k

=
m!

3m!

2m∑
k=0

(
2m

k

)
(m+ 1)k(m+ 1)2m−kT

k.

The ultraspherical polynomial Cλ
n(x) of degree n, which is

a special case of Jacobi polynomials, is defined by

∞∑
n=0

Cλ
n(x)r

n = (1− 2xr + r2)−λ.

For λ > − 1
2 they are orthogonal over the interval [−1, 1]

with respect to the weight function (1 − x2)λ−
1
2 . We set

x = cos θ and obtain

∞∑
n=0

Cλ
n(cos θ)r

n = (1− 2r cos θ + r2)−λ

= (1− reiθ)−λ(1− re−iθ)−λ

=
∞∑
k=0

(λ)k
k!

rkeikθ
∞∑
j=0

(λ)j
j!

rje−ijθ

=
∞∑

n=0

rne−inθ

n!

n∑
k=0

(
n

k

)
(λ)k(λ)n−ke

2ikθ,

(for more details we refer the reader to [10].) and so

Cλ
n(cos θ) =

e−inθ

n!

n∑
k=0

(
n

k

)
(λ)k(λ)n−ke

2ikθ.

By this we have

Cm+1
2m (cos θ)

=
e−2miθ

(2m)!

2m∑
k=0

(
2m

k

)
(m+ 1)k(m+ 1)2m−ke

2ikθ,

and finally we obtain

R
(m)
2 (e2iθ) =

(m)!(2m)!

(3m)!
e2miθCm+1

2m (cos θ).

As an orthogonal polynomial, Cm+1
2m has 2m roots in the in-

terval [−1, 1]. Therefore R
(m)
2 (T ) has 2m roots on the unit

circle, and we see that P
(m)
9/4 has 2m roots on the circle with

the radius 2/3. This completes the proof of Theorem 1.1.
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