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Abstract. On an N x N upper bidiagonal matrix B, where all the diagonals and the upper
subdiagonals are positive, and its transpose B”, it is shown in the recent paper [4] that quantities
Ju(B) = Te((BTB)M)=!) (M =1,2,...) gives a sequence of lower bounds 8;(B) of the minimal
singular value of B through 6y (B) = (Ju(B))™Y3M). 1In [4], simple recurrence relations for
computing all the diagonals of ((B¥B)™)~! and ((BB*)M)~! are also presented. The square of
0r(B) can be used as a shift of origin in numerical algorithms for computing all the singular values
of B. In this paper, new recurrence relations which have advantages over the old ones in [4] are
presented. The new recurrence relations consist of only addition, multiplication and division among
positive quantities. Namely, they are subtraction-free. This property excludes any possibility of
cancellation error in numerical computation of the traces Jy;(B). Computational cost for the trace

Ju(B) (M =1,2,...

) and efficient implementations for J>(B) and Js(B) are also discussed.
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1. INTRODUCTION

On numerical problem of matrix singular values, compu-
tation of a lower bound of the minimal singular value is
important in both theory and applications. For example,
in the dqds (differential quotient difference with shift) algo-
rithm [1] and the mdLVs (modified discrete Lotka-Volterra
with shift) algorithm [3] for computing all the singular val-
ues, the square of such a bound can be used as a shift of
origin. Generally speaking, choice of larger lower bound
brings larger acceleration effect on convergence of the al-
gorithms. Therefore, it is desirable to obtain larger lower
bound with less computational cost.

Let us consider an N x N (N > 2) real upper bidiag-
onal matrix B = (B, ;), where all the diagonals and the
upper subdiagonals are positive. Let BT be the transpose
of B. Let the singular values of B be o1(B),...,on(B).
Since all the upper subdiagonals of B are positive, the
singular values are simple [6, p. 124]. Thus, we can set
o1(B) > --- > on(B) > 0 without losing generality. In the
recent paper [4], a sequence of lower bounds of the min-
imal singular value on(B) of B obtained from conserved
quantities

Ju(B) b -)

of the discrete finite Toda equation [2] are discussed. Such
lower bounds are given as

021 (B) = (Ju(B)) "= ).

For a fixed M, the bound 60,,(B) is named the generalized
Newton bound of order M. These lower bounds increase

= Tr((BTB)M)~ 1,2

(M =1,

g

(M=1,2,...
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monotonically and converge to o (B) as M goes to infinity
[4, Theorem 3.1], that is,

01(B) < 02(B) < --- < on(B),
Jim 6a(B) = on(B).

(1)
(2)

For an arbitrary positive integer M, the lower bound
O (B) is obtained by applying one iteration of the well-
known Newton method to the characteristic equation

det((B*B)YM — \I) =0, (3)
where I is the N x N unit matrix, starting from A = 0.
In singular value computation, a shift of origin in the
dqds algorithm given as the square of the Newton bound
61(B) and a method for computing 6;(B) by using recur-
rence relations are discussed by Fernando and Parlett [1].
Recurrence relations for computing diagonals of inverses
(BTB)M)~! and ((BBT)M)~1, which can be used to com-
pute the lower bound 6, (B), are also presented in [4]. Note
that for M > 2, subtraction is included in these recurrence
relations.

Since 05/ (B) < on(B), (0a(B))? can be used as a shift
of origin in the dqds and the mdLVs algorithms. Let us
call (0p7(B))? the generalized Newton shift of order M.

In this paper, new recurrence relations are presented
which have advantages compared to those in [4]. The
new recurrence relations are shown to be subtraction-free
though they are derived from those in [4]. Namely, these
recurrence relations for diagonals of inverses ((BT B)M)~1
and ((BBT)M)~! consist of only addition, multiplication
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and division among positive quantities. Therefore, cancel-
lation error cannot occur in computation of the diagonals
of ((BTB)M)~1 and ((BBT)M)~! and the trace Jy/(B).
Computational cost for computation of the trace Jy(B)
by the old and the new recurrence relations are shown to
be O(MN) and O(M?N), respectively. In the cases of
M = 2 and 3, efficient implementations of algorithms for
computing Jys(B) are presented.

This paper is organized as follows. The old recurrence
relations found in [4] are reviewed in Section 2. The new re-
currence relations which are subtraction-free are described
at the end of Section 2. In Section 3, as a preliminary of the
proof, lemmas for derivation of the new recurrence relations
are given. Proof of the new recurrence relations is given in
Sections 4 and 5. In Section 6, computational costs for
the traces Jys(B) by the old and the new recurrence rela-
tions are shown to be O(MN) and O(M?N), respectively.
Efficient implementations of algorithms for computing the
traces Jo(B) and J3(B) are also performed. Section 7 is
devoted for concluding remarks.

2. THE OLD AND NEW RECURRENCE
RELATIONS

In this section, we give a brief review on the old recurrence
relations found in [4] and present an expression of the new
ones. Let the diagonal and the upper subdiagonal in the
i-th row of B be denoted by b; and ¢;, respectively, that is,

bi =B >0
¢ = Bjit1>0
Let the superscript T of a matrix denote its transpose. For

a fixed positive integer M and integers m (0 < m < M)
and ¢ (0 < g < M —1), let us set

(1<i<N),
(1<i<N-1).

Ve = (V) = ((BTB)™)

W) — (W"”)E((BBT) )7 (4)
X(q>:(XZ_<Q>)E( B(BTB)")~! = ((BBT)B)~!
y(@ = (yifg )= (X@)T,

For simplicity, we write the diagonals of these matrices as
(m) V(m) (m) —wm L@ _ X! @ and y _ Y(q)

for 1<i<N. Let us introduce quantltles zi(Q) for1 <i<
N and 0 < g < M — 1 defined as

zi(q)

bi(al? +y ). (5)

2.1. THE OLD RECURRENCE RELATIONS

In this subsection, we describe old results in [4].
The following theorem holds.
Theorem 2.1.1. Let M be a fixed positive integer. Let p

and q be integers such that 1 <p < M and 0 < q¢ < M —
1, respectively. As a formula for computing diagonals of
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(BTBYM)=! and ((BBT)M)~1 through a finite number of
arithmetics, the following simple recurrence relations hold.

v =1 (<i<N), (6)
w’” =1 (1<i<N), (7)
1 —1
o = e, (8)
N
1 _
P = B 47—l o
1 (p-1
wgp) — big 517 ), (10)
1
1 _
al? = L@ 08} 070 o) m
7
(2<i<N),
(‘Z) — 2,[](‘1) (12)
zf V=2 12 —w®)  (2<i<N). (13)
The following relations hold.
ZJ(\?) = 2w](\?), (14)
@ _ (D) 4 9@ _ (@) 1<i<N-1 15
Zz Z1+1 + (wz Uerl) ( St ) ( )

Instead of Egs. from (6) to (13), we can use Egqs. from
(6) to (11), (14) and (15) as a formula for computing the
diagonals of (BT B)YM)~! and (BBT)M)~1

We have the following remark.

Remark 2.1.2. For p = 1, the recurrence relations from
(8) to (11) in Theorem 2.1.1 are simplified to the recurrence
relations

W= (16)
W= @+ (<isN-1), (7)
uf’ = 5. (18)
wit = b12 @ wh +1)  (2<i<N). (19)

In the case of M = 1, Theorem 2.1.1 is reduced to these
recurrence relations.

On computation of diagonals of inverses (BBT)~! and
((BBT)2)~1, there exist some preceding works in numerical
analysis.

Remark 2.1.3. A formula related to Egs. from (16) to
(19) for computing diagonals of the inverse (BBT)~1 has
been known. See [1, 5, 7], for example. On computation of
diagonals of ((BBT)?)~!, von Matt [5] presented another
formula.

2.2. NEW RESULT:

RELATIONS

SUBTRACTION-FREE RECURRENCE

Let us introduce quantities B; (1 <i<N),

i} Fp(1<i<
N —1)and F; (2 <i< N) as follows.
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Definition 2.2.1.

1
Bi= (1<i<N), (20)
2,
Fi =35 =B, (1<i<N-1), (21)
. :
=gt =B (2<i<N) (22)

Note that all these quantities are positive.

(r)

Next, let us introduce quantities g; ’ and gﬁ’“) defined for

1<i<Nandr=1,2,.
Definition 2.2.2. The quantities gy) for 1 < i < N and
r=1,2,... are defined as follows.

e For i = N and arbitrary positive integer r, gj(\,) is given

as gg\,) =

oForl<i§N—landrzl,ggl)isgivenasgfl):

1
FUEQ1
eFor1<i<N-landr=23,...,¢" is given as
r r r— k r—k
9" = Figl"y + Biagl ™V + ngﬁlgz L (23)

k=1

Definition 2.2.3. The quantities gz@ for 1 < i < N and

r=1,2,... are defined as follows.
e For ¢ = 1 and arbitrary positive integer r, g( ") s given
as ggr) =0.

e For 2 < i < Nandr =1, g()lsgivenasgl(l) =
Faw®
iWi -

. For2§i§Nandr:2,3,...,@@ is given as

g = Fgm

+ng’“>1gf’” Mo (24)

1 +Bz lgz

Remark 2.2.4. The recurrence relations in Remark 2.1.2
can be rewritten with the quantities defined by Definitions
from 2.2.1 to 2.2.3 as follows.

vy = By, (25)
(1) —Fol i +Bi=¢M+B, (1<i<N-1), (26)
w%” = Bl, (27)
w® = Fw, + B =3V + B, (2<i<N) (28)

Then, the main theorem of this paper is described.

Theorem 2.2.5. For M > 2, the diagonals "UZ(S) and wZ(S)
of (BTB)*)™1 and ((BBT)*)™1, respectively, for 1 <i <

o7

N and 2 < s < M are computed by the recurrence relations

vj(\?) = BNU)E\?_U, (29)
9 = Bl (30)
UZ(S) FU(S) + B; w(s Dy 2Zg w, (a—k) (31)
k=1
(1<i<N-1),
w§5) = ( *) L+ B v(s 2 —|—2Z (s=k) (32)
k=1
(2<i<N),

with the recurrence relations from (25) to (28).

From Definitions from 2.2.1 to 2.2.3, Remark 2.2.4 and
) of (BTB)M)~! and
w™ of (BBTYM)=1 (1 <i < N, M = 1,2,...) are
computed through only addition, multiplication and divi-
sion among positive quantities. Namely, the recurrence
relations are subtraction-free. Let us call them the new
recurrence relations. On the other hand, let us call the
recurrence relations in Theorem 2.1.1 and Remark 2.1.2
the old recurrence relations. It is to be noted that both
old and new give the traces Tr(((BT B)*)~!) through the
diagonals of ((BTB)M)~! or ((BBT)M)~!

Theorem 2.2.5, all the diagonals vZ(M

3. PREPARATION FOR THE PROOF OF THE
THEOREM

In this section, we show lemmas for derivation of the new
recurrence relations in Section 2.2. For convenience, let us

represent the inverse of B with the notation
S=(Si;)=B""

S is an upper triangle matrix, and the elements of S have
the following relations [4].

Si;=0 (1<j<i<N),
1

S,J:F (]'SZ*]SN)v

b; . (33)
Siy15 = _;Si,j (1<i<j<N),

) 1
Sig=—2=Sim1 (L<i<j<N)

J

In this section, M is an arbitrary positive integer. The
elements of S, VW W® X and Y@ for 1 < p < M
and 0 < ¢ < M — 1 satisfy the following relations.

Lemma 3.0.1. The elements of V® and W®) for 1 <
p < M satisfy

V(P)

ZS’L k:Y(p Y ’
ZS’C»JY(p 1)

ZSJ]CXP 1) _
— Si p 1) _

(34)
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for1 <1 < N and 1 < j < N. In particular, on the
diagonals of V®) and W@ for 1 <p < M, it holds

N
=V = Z SinXh D = > Si¥ii Y,
(35)
W(P) Z Si. X(P 1) _ Z Si. Yifi_l)
for1<i<N.
Proof. Since the relationships V® = x®»-1) 8T = gy (r—1)

and W® = §Tx®=1) = y»=1)§ hold for 1 < p < M and
S is an upper triangle matrix, we have Eq. (34). Eq. (35)
is directly obtained by substituting j =i to Eq. (34). O

3.1. LEMMAS—PART I

Proof of lemmas in this subsection is given in Appendix.
For1<i<NandO0<p<pu<N-—ilet §8,, and
Vi,u,p e defined as

|
Hzt

—bi+”_1> (p < m),

Binp =19, i Citv—1 (36)
1 (p = u)’
2 Ciry1
B f[( L ) (p < n),
’Vi,u,p = v=p+1 1+v (37)
1 (P = :U’)’

respectively. We have
Lemma 3.1.1. For 1 <i< N and 0 < p<pu < N —1,

the following relationships among elements of S hold.
(i+p<j<N),
(1<ji<i+p).

Sitp,j = Biw,pSitp,j

Sjitn = Vi,upSjito

This lemma represents some relationships between two
elements among the diagonal and the upper triangle part
of S which are in the same row or column. We also con-
sider the case where these two elements are identical. This
consideration is reflected to the definitions (36) and (37).
These definitions help us to express equations in a simpler
form. Note that

N2 {Hﬁ—p+1 FH—V (p<p),
TP

1 (p=p). 38

For the quantities v; , ,, the following lemma holds.

Lemma 3.1.2. For 1 <i< N—-1landl1 << u< N—q,
it holds

2 _ 2
Yit1,p-1,6-1 = Vip,e-

Let us consider a set of quantities {¢; ¢} defined for 1 <
1t < N—-—1land 1< €& < N —i. Let us introduce linear
functions h; z(¢) defined for 1 <4 < Nand 1 < A< N
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and computed from such quantities p; ¢ (1 <i < N—-1, 1<
& < N —1i). The definition of the function h; x(p) is

—i p
Z Biyevievic (A< N —i),

p=Xxg=1 (39)

hia(p) =

o

(A> N —13).

These functions are linear with respect to the quantities
@i ¢. Suppose that the quantities ¢; ¢ in Eq. (39) are given
with another sets of quantities {gpm} (j =1,2,...) defined
forlSzSN—land1§§§N—zbyg@i,§:2ja(j)<pgfg

where the coefficients a9) (j = 1,2,...) are invariable for
all of £ such that 1 < & < N — 4. Then, it holds

hia() = hia(3; aP @) =37 alh; (7). (40)

When A > N — i, then the linearity (40) is obvious since
hia(p) is identically zero. When A < N — i, then we can
readily verify the linearity (40) from the definition (39).

Let us consider the case where all of ; ¢ for1 <¢ < N—-1
and 1 < ¢ < N — i are zero. From the definition (39), we
have

hi,A(O) =0 (41)

Next, let {¢;} denote a set of quantities defined for
1 <i< Nand1l < XA < N. We make an additional
condition to ¢; x that they satisfy

Pix=0 (I1<i<N, N—i+1<X<N).

Then, let us introduce quantities H (T)(gb) defined for 1 <
Z<N1<)\<Nandr—012 Through the

function h; x, the quantity H, Z(&) (¢) is deﬁned as

Hi(g\)(@ = din
H) () = hix

(1<i<N, 1<A<N).

(42)

(r=0),

(r=1,2,...). (43)

(H"D(9))
™)

As is shown in Section 5, among these quantities, only H,
(r =1,2,...) are directly relevant to the computation of
the conserved quantities. Note that the set {H 1(72 (9)} (1<
i< N-—-1,1<&<N—1i)can be used as quantities ¢; ¢
in Eq. (39) for each r (=0,1,2,...). From the definitions
(39) and (43) and the condition (42), when A > N — 1, it
is obvious that

H(9)=0  (r=0,1,2,...). (44)

Let us consider the case where all of ¢; ¢ for 1 <¢ < N
and 1 < ¢ < N are zero. From the definition (43) and
Eq. (41), we readily obtain

H")(0) =0

for1<i<N,1<A<Nandr=0,1,2,....

Let us introduce constants x; » defined for 1 < i < N
and 0 < A < N. Depending on i and A, these constants
Xi,» are defined as

(45)

(A< N —4), (46)

N—1

2
E , Vi, p,0
H=A

0 (A> N —1).

Xix =
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Note that the set {x; 2} (1 <i < N, 1 <X < N) can be
used as quantities ¢; » in Eq. (43). Therefore, note that
the set {x; ¢} (1 <i< N -1, 1<&< N —1i) can be used
as quantities ¢; ¢ in Eq. (39).

The following three lemmas hold.
Lemma 3.1.3. For 1 <i< N —1, it holds

Z Vz,u 0=

Lemma 3.1.4. For 1 <i< N—-1and1 <A< N —1, it
holds

2o

0
Hz( 1) = Xi,1 = ¢ 'Hrl

Z %,u, -

< N—1landl < XN, it

2+1Xz A

Lemma 3.1.5. For 1 < j
holds

F1
Xi+1.a-1 = Fi 7 Xi

3.2. LEMMAS—PART II

In this subsection, we prepare Lemmas from 3.2.1 to 3.2.5

which correspond to Lemmas from 3.1.1 to 3.1.5 in the

previous subsection. Proof of these lemmas is given in a

similar way to that of Lemmas from 3.1.1 to 3.1.5.
For1<i<Nand0<p<pu< i—l,letﬁi%p and 7;

be defined as

KPP

Bipp = v=p+1 Ci—v
1 (p=n),
12 Cs
Fiip = 2pia \ bim
1 (p = n),

respectively. The following lemma holds.
Lemma 3.2.1. For 1 <1< N and0<p<u<i—1, the

following relationships among elements of S hold.
Sji—n
Si—p.j

= Biu,pSii-p 1<j<i—p),
= YioppSi=p.j
Based on a reason similar to what we mentioned about

Lemma 3.1.1, these definitions help us to express equations
in simpler form. Note that

2 M e Fiw
P 1 (p — M)

For the quantities 7; , ,, the following lemma holds.
Lemma 3.2.2. For2<i< Nand1 << pu<i-—1, it
holds

~2 =2
Yi—1,u-1,6-1= Vi
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Let us consider a set of quantities {¢; ¢} defined for 2 <
1< Nand1l<¢<i—1. Let us introduce linear functions
ﬁi,A(gb) defined for 1 < 4 < N and 1 < XA < N and com-
puted from such quantities @; ¢ (2 <i <N, 1 <& <i—1).
The definition of the function h; () is

i—1 p

- Bi ¥ epie (A <),

hi,)\((p = ,; ; 8 (47)
0 (A>1).

Similar to h; A(¢), these functions are linear with respect
to the quantities ;¢ and it holds

hin(0)=0 (1<i<N, 1<A<N).

Next, let {¢; 1} denote a set of quantities defined for
I1<i<Nandl <A< N We make an additional
condition to ¢; » that they satisfy

Gin=0

Then, let us introduce quantities H. (T)((b) defined for 1 <
1 < N, 1<)\<Nandr—0,1,2 Through the
function hZ, A, the quantity H Z( /\) (gb) is deﬁned as

(1<i<N,i<A<N).

= O 5
(r=0) (48)
(r=1,2,...).
Similarly to the quantities H Z(T)\), among these quantities,
only f[z(rl) (r =1,2,...) are directly relevant to the com-
putation of the conserved quantities. Note that the set
{Hz(?(qb)} (2<i< N, 1<€<i—1)can be used as quan-
tities @; ¢ in Eq. (47) for each r (= 0,1,2,...). Similarly to
H Z( )\) (¢), the following two relations hold. If A > 4, it holds

70(3) =0

(r=0,1,2,...).
It holds o
Hi;\ (0) =0
for1<i<N,1<A<Nandr=0,1,2,....
Let us introduce constants x;  defined for 1 <7 < N
and 0 < A < N. Depending on i and A, these constants
Xi,» are defined as

(A <),

Z 71,# 0

0 (A >4).

Xix =

Note that the set {X; 2} (1 <i< N, 1 <X < N) can be
used as quantities ¢; » in Eq. (48). Therefore, note that
the set {X; e} 2<i< N, 1<&<i—1) can be used as
quantities @; ¢ in Eq. (47).

The remaining lemmas are as follows.
Lemma 3.2.3. For2 <i < N, it holds

77(0) 1
Hi(,l XZl Z’YZMO _Cg 1’LU( )
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Lemma 3.2.4. For2<i< N and1 <\ <1i—1, it holds

Z V1 =

Lemma 3.2.5. For2<i< N and 1 <A<N,

1X1 A-

it holds

Nic1a-1 = F\Xix
4. PROOF OF THE NEW RECURRENCE
RELATIONS—STEP 1

The recurrence relations in Theorem 2.2.5 are obtained by
rearranging the recurrence relations in Theorem 2.1.1 judi-
ciously.

Hereafter, let M > 2 unless we specify the range of M
through this section.

Egs. (8) and (10) in Theorem 2.1.1 correspond to
Egs. (29) and (30) in Theorem 2.2.5, respectively. Let us
start from Eq. (13) in Theorem 2.1.1. Let us use symbol
k instead of the symbol i used in Eq. (13). Namely, for
2<k<Nand 0<qg< M —1, it holds

5" =57 120" —w?)).
Summing both hand sides for &k from 2 to i (2 <7 < N) and
considering the recurrence relation (12) in Theorem 2.1.1,
we have

(49)

i i—1
Zi(q) _ ZEQ) +2 (Z U}(Cq) . ZwIEQ))
k=2 k=1
i i—1
_ 2U§q) +9 (Z UI(CQ) - ZwJEQ))
k=2 k=1
i i—1
=9 <Z ,U](C‘Z) _ Z w]gQ))
k=1 k=1

for2<i< Nand 0<qg< M —1.

4.1. PROOF—PART I

The goal of this subsection is to show that it holds

0 = Fol) + B~ ”+2§:Bfﬁﬁ”()§*“(m)
k=1

for2<s<Mand1<i<N-—1.
Let us show that it holds

oy _22 () (Q) l()

forl1<i< Nand 0<¢g< M—1. For2 <i< N and
0 <q< M -1, Eq. (51) is obtained from Eq. (49). For
i=1land 0<¢g<M —1, Eq. (51) holds since

(51)

Ziq) wgq) _ 20511) _ w%q) _ Q(qu) _ wgq)) + wgq).
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From Lemma 3.0.1, it holds

ZU(P) ZZSkly(l) 1)
k= ll k

Zwl(gp) _ Z Z‘Sl ky(l’ 1)
k=1

k=11=1

Sy Y sy

=1 k=1

for 1 <i< N and 1< p < M. From these equations, we
have

Z(U () _ (p) Z Z Sle(p 1)

k=1 =i+1

N—
E k z+u

(52)

1

y (P=1)
i+u,k
k=1p

forl1<i<N—-land1l<p< M. LetusmtroduceA()
defined for 1 <i < N, 1 <A< Nand 0<t< M. The

definition of AE’ ;\ is

i N—i p 1 ) .
AW = )P bise VomeShireVipen (AN i),
A T ) k=1 p=XE=1 "
0 (A> N —1).
(53)

Note that the set {A(t) (1<i<N,1<XA<N)can be
used as quantities ¢; » in Eq. (4 ) for each ¢ (0 <t < M).

Therefore, note that the set {A( P 1<i<N-1,1<
E<N-— z) can be used as quantltles @i ¢ in Eq. (39) for
each t (0 <t < M). Moreover, since V() = I, it holds

(1<i<N, 1<A<N).  (54)

The following lemma holds.

Lemma 4.1.1. For 1 <i< N—-1,1 <A< N —1i and
1<a< M, it holds

i N—i

Z Z Sk it z(+u k;) = Xi, Aw

k=1 p=X

YAl

Proof. Let u, k and g be integers such that 1 < u < N —1,
1<k<iand 0<q< M —1, respectively.

Since the relationship Y@ = STV (9 holds and S is an
upper triangular matrix, we have

N
Yzfg) _ ZSZZ Z S Zv(q) Z Sl V(Q)
=1

for 1 <i< N and 1l < j < N. Considering this result,
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Lemma 3.1.1 and Eq. (33), it holds
itp

Vi =D SVl
=1
it

_ZSZ z-‘ruVlk + Z Sll-‘ru‘/} k)

=1 l=i+1

i 2
= Wi 0SLViE + D SiveiraViily
=1 =1

’Yz,uOZSlz‘/lk +Z'71M55l+5l+5 ’Lgr%kl
=1 £=1

q)
= Yi,u,0Y; zk +Zb 71#5‘/z(+£k
£=1
for 1 < i < N — 1. Then, with consideration of Lemma
3.1.1, it holds

q)
Sk i+HK+1L k

= Yi,u, OSk H—/L}Z k + Z b ’Y?,,u,fsk it H—é k
é=1

*%#oSk zYz(k JFZ ’Y“LgSk z+£Vz+gk

for 1 <71 < N —1. Therefore, with consideration of
Lemma 3.0.1 and the definitions (46) and (53), we obtain

i N—i

ZZS’“J”‘ Zﬂek

kluk

_ZZ’YZMOSkZ 7,;: 1)+A£,O;\71)

k=1 p=X\

N—i
Z%z,,t,o (ZSM " ”) +AlTY

= Xi, /\w A(a %

for 1I<i<N—-1,1<A<N-—-dandl<a<M. O

From Eq. (52), Lemma 4.1.1 and the definition (43), for

1<i<N—-—land1l<u<M—1, we have

Z(v,&") —w

k=1

u u u—1
) =y 4 Al (55)

= H) ()uw!™ + Al

From Egs. (51) and (55), for 1 <¢i < N—1land 1 <u <

M — 1, we obtain
2" —w™ = 2(H COwf™ + ATTY) + w)

Therefore, from Eq. (9), for 2 < s < M and 1<i<N-1,
it holds

(w)

o —Fl®, + B
+2B,(H, (0w + AFT).

(56)
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For s =2 and 1 < i < N — 1, we obtain Eq. (50) by
substituting s = 2 into Eq. (56) and applying Eq. (54).

Before considering the cases of M > 3, we prepare the
following two lemmas.

Lemma 4.1.2. For 1 <i< N,1 <A< Nandl <a<
M, it holds
A = hin (0w + b A (ACY),

Proof. For 1 <i< Nand N —i+ 1< X< N, it is trivial
since Al(-f);\), hix(x) and h; \(A@~V) are zero from their
definitions. Then hereafter, in this proof, let i and A be
integers such that 1 < ¢ < N—1land 1 < X < N — 4,
respectively.

Additionally, let £ be an integer such that 1 <& < N —1
in this proof. We see that

> Sk,i+§‘/i(f§),k
k=1
= Z Vi,e,05%,i Z Sz+§lYl

l=i+¢&

1
%soz S stew Vi

i
1
=igo Y Z Skyi * Big,0%i,0,05,i Y;fp Y
k=1 p=¢
i N—i

1
—515072§Oszzzzskz+p 'prk)

k=1 p=¢
with help of Lemmas 3.0.1 and 3.1.1. We have

Bi,g,0Yi,¢,05,
_ f[ (_bi+u—1) ﬁ (_Ci+y/—1) 1
iy} Citv—1 =1 biyor b;
_ 1
bive

from Eq. (33) and the definitions (36) and (37). Therefore,
we obtain

i . 1
Zskﬁ”fvi(-&-&),k bit
k=1

<xz,gw< YAl

with consideration of Lemma 4.1.1.
and the definition of Agoi), we obtain

( 1, 1
ELENV L
bire " bive

N—i p
= | 222 Brorduene | i
/_[,:
+

From this equation

Al = (ricul® + A

> a—1
> Birerluelie

1
= hia()w'® + iy (AlD), O
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Lemma 4.1.3. For 1<i< N,1<A<N,r=0,1,2,...
and 1 < a < M, it holds
r a r+1 @ r+1 a—
H(A®) = H (0wl + HL (AC),

(57)
Proof. For 1 < i < Nand N—-i+1 < A < N, it is

trivial since Hl(T)\) (A, Hi(r;l)(x) and HZ.(T;rl)(A(O‘_l)) are
zero from their definitions. Then hereaftér7 in this proof,
let + and A\ are integers such that 1 < ¢ < N — 1 and
1 < X < N — 1, respectively.

We here use mathematical induction. For r = 0, Eq. (57)
holds since it holds

HS(A®) = Al
= hia()w™ + hiy (ACTD)
- hi,)\(H(O)( )w! (@) 4 hi(H (0)(A(a*1)))
= H3 (0w + Hf,?(A( )

with consideration of Lemma 4.1.2. Let k denote an integer
such that 0 < k. If Eq. (57) holds for all r such that
0 <r <k, then, Eq. (57) holds for r = k + 1 since it holds

H(k+1)(A(a )
ua(H®(AC)
= hix(HED ()w!® + HEFD (Al-D))
= B (HF D ) wl™ + hy y(HFFD(Al-DY)
— Hi(,k)’\Jrz)( ) (a) T H(k+2)(A(a 1)) 0

Let us consider cases where M > 3. From Lemma 4.1.3,
for3<s< M,1<i< N —1and an integer k such that
2 <k<s—1,it holds
T2 (AC9) = 7Y o™ + HH @A),

Summing the both hand sides of this equation from & = 2
to k = s — 1, we have

|
—

S

HY(ACT) =375 (0w ™ + TP (AO)

k=2
for 3 < s < Mand 1 < i < N —1. Then, from the
definition (43) and Eqgs. (45) and (54), we obtain
s—1
s—2 k—1 s—k
AT =3 T 0w
k=2

for 3 < s < Mand 1 < ¢ < N — 1. Substituting this
result into Eq. (56), we have Eq. (50) for 3 < s < M and
1<:<N-1.

Finally, we have shown that Eq. (5
2<s<Mand1<i<N —1.

0) holds for M > 2,

4.2. PROOF—PART II

The goal of this subsection is to show that it holds

wi® = Frwl) + B~ 1)+QZBH
k=1

Ve (58)
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for2<s<Mand2<i<N.
From Eq. (49), it holds

for2<i< Nand0<qg< M-—1.
From Lemma 3.0.1, it holds

S:v(p) iis zX(p 1)’

k=1 k=1 =k

Zw ZZSkX(p 1) _ ZZSle(P 1)
k=1 k=11=1 =1 k=1

for2<i< N and 1 <p< M. From these equations, we
have

i—1 N i—1
Z(U(P) w(:ﬂ)) _ Z Sk,lX;gpfl)
k=1 =i k=1
N i—1 )
—1
=D SiwiXil
=i p=1
for 2 <i< Nand1l < p < M. Let us introduce A()
defined for 1 <i < N, 1 <A< Nand 0<t < M. The
definition of Agt/)\ is
N o=l uo
- t .
A0 ) 222D TSV, o (<),
LA T ) I=i p=Ag=1 T
0 (A>1)

Note that the set {Aft/)\} (1<i<N,1<X<N)can be
used as quantities ¢; » in Eq. (48) for each ¢ (0 <t < M).
Therefore, note that the set {Agtg} (2<i<N,1<¢<

i —1) can be used as quantities @; ¢ in Eq. (47) for each ¢
(0 <t < M). Moreover, since W = I it holds

Ag?;:o (1<i<N,1<X<N). (60)

The following lemma holds.
Lemma 4.2.1. For 2 < i< N, 1< A<i—1andl <
a < M, it holds

N i—1

ZZSz ulXZ ll«l _szv

=1 p=X

_|_ A(a 1)

Proof of this lemma is similar to that of Lemma 4.1.1.

Similarly to the derivation of Eq. (55), for 2 < i < N

and 1 <u < M — 1, we have

1—1
S — ) = il + ALY (61)
k=1

= 2 (e + A

1/7
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From Egs. (59) and (61
we obtain

yfor2<i<Nandl<u<M-1,

() ()

9 4f®) 2 (Dl 4 AL 4o

Therefore, from Eq. (1
holds

1), for2<s<Mand2<i<N,it

wfs) :F-wgs)l + B-U(S_l)
+2B (H(O)( ) Z(s 1)+As 2))

(62)

For s =2 and 2 <1i < N, we obtain Eq. (58) by substi-
tuting s = 2 into Eq. (62) and applying Eq. (60).

Before considering the cases of M > 3, we prepare the
following two lemmas.
Lemma 4.2.2. For 1 <i< N,1 <A< Nandl<a<
M, it holds

A(oj\)—h AR ((1)+h (A(afl))'

Lemma 4.2.3. For 1<i{< N,1<A<N,r=0,1,2,...
and 1 < a < M, it holds

R A) = AR (0o + R @),

Proof of these lemmas is similar to that of Lemmas 4.1.2
and 4.1.3.

Let us consider cases where M > 3. Similarly to Section
4.1, it holds

s—1

rr(k—1), ~ s—k
S aS Y (@)

k=2

R (s—2
Az(’;sl )=

for 3 < s < M and 2 <4 < N. Substituting this result into
Eq. (62), we have Eq. (58) for 3 < s < M and 2 <i < N.

Finally, we have shown that Eq. (58) holds for M > 2
2<s< Mand2<i<N.

5. PROOF OF THE NEW RECURRENCE
RELATIONS—STEP 2

In this section, we show that BiHi(ﬁfl) (x) and Biﬁi(ffl) (X)
are equal tog andg forl1<i< Nandr=1,2,...,
respectively. If this assertion is verified, then the new re-
currence relations in Section 2.2 are finally proved by com-
bining the proof of these correspondences in this section
with the argument in Section 4.

For convenience, let C; (1 < i < N—1) denote C; = 1/¢2.

5.1. PROOF—PART I

In this subsection, we show that B;H (T_l)(x) correspond
tog f0r1<z<Nandr—1 2,.
We have the following three lemmas

Lemma 5.1.1. Forr =1,2,..., it holds BNH(T 1)( ) =
.
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Lemma 5.1.2. For 1 <i¢ < N —1, it holds BiHi(le)(x) =
0
Lemma 5.1.3. For r = 1,2,..., it holds
BN—le:ll,)l(X) = 91(\77) 1

Proof of these lemmas is given in Appendix.

For N = 2, the correspondences between BiHi(’Tl_l)(X)
and gi(r) forl1<i< Nandr=12,...
Lemmas 5.1.1 and 5.1.3.

Let us consider the cases where N > 3. The following
lemma holds.

Lemma 5.1.4. Let N be N > 3. Let us consider sets of
quantities {@; ¢} and {1; ¢} defined for 1 <i < N —1 and
1 <& <N —i. Assume that {¢; ¢} and {1; ¢} satisfy

are shown from

Pit1,6—1 = Vig (1<i<N-2 2<E<N—i).

Then, for 1 <i< N -2 and2 < X< N —i, it holds

hit1a-1(9) = hix(¥) — Cithi 1 Xi,x,
hiv1,1(p) = hia(¥) — C’ﬂ/%,lXi,l.

Proof. Let ¢ and A be integers such that 1 <¢ < N —2 and
2 < XA < N — i, respectively.
With help of Lemma 3.1.4, we see that

2
d

M=

», 2
Bitevi et

=
o

S
N

B +§/Y7,“u, E¢Z £~ 7,+1’y1,’l¢’11/}1 1

I I
IME 7
~

M:

=1
N—i p N—i
=D Bireriuetic — Birvin Dol
pn=A¢=1 H=A
= hzv)\(w) B2+17/}z 1° l+1Xz A
= hi,/\(w - i¢i,1Xi,,\-

Considering this result and Lemma 3.1.2, we have

z+1 (90)
—i—1 p
2
= Z i+ 14V i41,p, Pi+1,€
H=A—
N—i—1 p+1
" 2
= Bz‘+£'%‘+1,u,5/—1S0i+1,§'—1
p=A—1¢=2
N—1 M/
v 2
= Z Biverviya,p—1,6-1Pi1,6 -1
w=Xxg=2
N—i
2
=D D Bueruetie
n=Xg=2
= hix(1) — Cithi 1 X
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From this result, we have

hiv1,1(p)

= hi2(¥) — Cithi1Xi2
N—i p

= Z Z Bi+§’)’¢27u7§¢i,§ 7.1)[)1 1° z+1X2+1 1
p=2 =1

z
L

[
(]
Mt

B+§71M§¢z£ z+1%1 1%ia

Il
—

13

ki
< =

(1)
- BiJrﬂ/}z 1 C¢+1UZ+2

=h;1(¢) — (Bi+1 + F¢+1U£_1~_)2)¢¢,1
=h;1(¢) — UEBWM
= hin1(¥) — Civbi1xin

with consideration of Remark 2.2.4 and Lemmas 3.1.3 and
3.1.5. ]

For convenience, we introduce new quantities. The new
quantities K(A defined for N >2,1<i<N-1,1< )<

N and r=1,2,... are given as follows:
K =FLAHT (0 - GHI Y (00 (63)
k—1 r—k
-G D ES 0.
k=1

We show the following three lemmas.
Lemma 5.1.5. Only in this lemma, let N be N > 2. For
1<i<N—-1,1<A<Nandr=1,2,..., it holds
haa(K©) = K3 + Gl 0OHR (-
Proof of this lemma is given in Appendix.
Lemma 5.1.6. Let N be N > 3. For1 < i < N — 2,

2< A< N—dandr=1,2,..., it holds
Hz+1,1(X) = K2T1 :
Proof. Firstly, note that we have
Fz—i—lH( )( ) = Fz+11 z(+)1 = bz+1( v+1%(+)2 + Bij1)

1 0
= C$+1Uz(+)2 +1= Hz(+)1 100 +1

with help of Remark 2.2.4 and Lemma 3.1.3. Secondly,
note that
0 = o 0
H e 100 = Xiste-1 = Fiixie = FHLE (0
holds for N >3, 1 <i< N —-2and2<¢ < N —1 from

Lemma 3.1.5. Considering these results and Lemma 5.1.4,
we obtain

= hin(FRHO () — Ci - FEZLHS (0 - X
— > 0 0
= F Y () - GHO () — GHY, L (0HS (x)

1)
A
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and

Hz(+)1 1(X)
= hit11(H® (x))
= hig(F5HO () = Ci FRHS (0 - i
1,1 i+1 i,1 Xz,l
(0)
i1

') = GHD L 00H (x)

= F A HY (0 - Gl

_ D)
=80
Assume that it holds
l
HZ(er)l A71(X l
Hz(—i-)l (X)) = Kz(l)

for all [ such that 1 <[ <'s. Then, we have

s+1
Hz(+1,\) 10
= hi+1,,\—1(H(s) (X))
= hiA(K®) — OK(lX’L)\
s+1 0 X, s 0
= K5+ GHE, L 00HS () = CHS L 00HS (x)
s+1)
= Ki(,A
and
1
2TV ()
= hip1,1(H9(x))
=h“@“U—0K@ml
s+1 0 b s 0
= K5 + G 00HSY (00 — GHEL L 0O (x)
1
-l

with consideration of Lemmas 5.1.4 and 5.1.5. Therefore,
it is shown that Eq. (64) holds for 1 <i < N —2,2< A <
N —i,and r =1,2,--- by mathematical induction. O

Lemma 5.1.7. Let N be N > 3. For 1 <i < N —2 and
s=2,3,..., it holds BiH TV (x) = ¢

Proof. For r =1,2,..., from Lemma 5.1.6 and the defini-

tion (63), it holds
Hia00 =R 00 -

(k=1

- C Z H1+1 1)

Multiplying the both hand sides by B; Fy, (=
rearranging, we have

Y(x)

szn k) (X)

CiH"

Bi+1Fi) and

BiHi(,Tl) (x) =F; - Bi+1Hi(i)1 LX) + Biy1 - BiH-(,Tfl)(X)
k—1 > r—k
+ ZBmeH Y00 BHL (0.
From this result, Definition 2.2.2 and Lemmas 5.1.2 and

5.1.3, BiHi(,sl_l)(X) = gi(s) holds for 1 < i < N — 2 and
§=2,3,.... O
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From Lemmas 5.1.1, 5.1.2, 5.1.3 and 5.1.7, the corre-
spondence

BH V() =g (1<i<N r=12...)

is shown.

5.2. PRrROOF—PART II

In this subsection, we show that Bifli(ﬁfl)(@ correspond
to g for I<i<Nandr=1,2,....

We have the following three lemmas.
Lemma 5.2.1. Forr =1,2,..., it holds Blﬁl(fl_l)(i) =
~(T)

Lemma 5.2.2. For2<i<N, it holdsBHZ(Ol)( ) 2(1).
, it holds ByH

V() =

Lemma 5.2.3. Forr =1,2,...
3"

Proof of these lemmas is similar to that of Lemmas from
5.1.1 to 5.1.3. We omit them.

For N = 2, the correspondences between B; H
and QET forl1<i< Nandr=12,...
Lemmas 5.2.1 and 5.2.3.

Let us consider the cases where N > 3. The following
lemma holds.

Lemma 5.2.4. Let N be N > 3. Let us consider sets of
quantities {P; ¢} and {; ¢} defined for 2 < i < N and
1 <€ <i—1. Assume that {@; ¢} and {1; ¢} satisfy

")

are bhOWH from

Gi1e-1=Pie B<i<N,2<¢<i—1).

Then,f0r3§i§Nand2§)\§i—1, it holds

ix(®) = Cim1ti 1% x,s
774 11( ) ( )7

7:—11/31‘,1)&,1-
Proof of this lemma is similar to that of Lemma 5.1.4.
For convenience, we introduce new quantities. The new
quantities Kz(r)\) defined for N > 2,2 <i< N, 1<A<N
and r =1,2,... are given as follows:

hi 1 A— 1(95)

Similarly to Section 5.1, we have the following three lem-
mas.

Lemma 5.2.5. Only in this lemma, let N be N > 2. For
2<i<N,1<A<Nandr=1,2,..., it holds
hia(K) = KO + G B, (0 HS ()

Lemma 5.2.6. Let N be N > 3. For3<i< N,2< A<
i—1andr=1,2,..., it holds

{lfff”l,m %)
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Lemma 5.2.7. Let N be N > 3. For 3 < i < N and
§=2,3,..., i holds Biﬁi(f'fl)( )= gl(s)

Proof of these lemmas is similar to that of Lemmas from
5.1.5 to 5.1.7.

From Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.7, the corre-
spondence

Ba (%) ="

is shown.
Thus, derivation of the new recurrence relations in Sec-
tion 2.2 is completed. O

6. COMPUTATIONAL COST FOR COMPUTING
THE TRACE Jy/(B)

In this section, computational cost of the trace Jy(B) for
a fixed M is considered. In Section 6.1, the computational
cost with the old recurrence relations [4] in Theorem 2.1.1
is discussed. In Section 6.2, the computational cost with
the new recurrence relations in Section 2.2 is discussed.
In Section 6.3, a reduction of the number of operations
of the recurrence relations in Section 2.2 is discussed. In
Section 6.4, implementations of algorithms for computing
the traces Jys(B) (M = 2, 3) are performed. The numbers
of operations of these implementations are also discussed.

6.1. COMPUTATIONAL COST WITH THE OLD RECUR-

RENCE RELATIONS

In this subsection, computational cost for the trace Jys(B)
for a fixed M with the recurrence relations in Theorem 2.1.1
is estimated. The following corollary of Theorem 2.1.1
holds.

Corollary 6.1.1. Let M be a fized positive integer. The
trace Jpr(B) can be obtained O(MN) operations through
the old recurrence relations in Theorem 2.1.1.

Proof. We estimate computational cost for computing all
the diagonals of ((BBT)M)~!. Let us consider the case
where all the quantities v\, w(® and z{? for all i (1 < i <

N) and ¢ (O <g< M- 1) are obtained before obtaining the
M) for 1 < ¢ < N. These quantltles are suffi-
cient to determine all the diagonals w M) for 1 <i¢<N.
’UZ(O) wz(o) and z(o) for 1 < i < N are
given as v( ) = =1, wEO) = 1 and z( ) = 2, respectively.
Then, the number of remaining quantlties to be obtained
is (3M — 2)N. They are not given directly. Each of these
quantities can be obtained within at most six times of the
four basic operations of arithmetic according to the recur-
rence relations in Theorem 2.1.1. Then, all the diagonals
of ((BBT)M)~! are obtained less than 18 M N operations.
The trace Jy(B) is computed with N — 1 times addition
after all the diagonals of ((BBT)M)~! are computed. [

diagonals w

As is shown in [4],

Note that the generalized Newton bound 6,;(B) and
the generalized Newton shift (6,7(B))? can be obtained
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by once division from (JM(B))ﬁ and (JM(B))ﬁ,
tively.

respec-

Remark 6.1.2. For some integer m (> 2) and positive real
number (, assume that computational cost for computing
¢ w from ¢ is negligible. Then, the computational costs for
the generalized Newton bound 6,,(B) and the generalized
Newton shift (,;(B))? with the old recurrence relations in
Theorem 2.2.1 are both O(MN).

6.2. COMPUTATIONAL COST WITH THE NEW RECUR-

RENCE RELATIONS

In this subsection, computational cost for the trace Jys (B)
with the new recurrence relations is discussed. Note that
computational cost should be considered for sufficiently
large M and N.

In the case of M = 1, the trace J1(B) can be computed
with the recurrence relations in Remark 2.2.4. An algo-
rithm for computing J;(B) by these recurrence relations
is shown in Algorithm 1. In the case of M > 2, an algo-
rithm for computing diagonals of the inverse (BBT)~! is
shown in Algorithm 2. In the case of M > 3, algorithms
for computing diagonals of the inverse (BT B)~! and gl(r)
(1<i<N,2<r<M-—1) are shown in Algorithms 3
and 4, respectively. In the case of M > 4, an algorithm for
computing g( r) (1<i<N,2<r<M-2)isshown in
Algorithm 5. Moreover, in the case of M > 2, Algorithm
6 is utilized. Algorithms for computing the traces Jo(B),
J3(B) and Jp(B) (M > 4) are shown in Algorithms 7,
8 and 9, respectively. Note that Algorithms 3, 4 and 6
are called after Algorithm 2 is called. Moreover, note that
Algorithm 5 is called after Algorithm 3 is called.

From Algorithm 9, the following Remark 6.2.1 follows.

Remark 6.2.1. The computational cost for the trace
Jur (B) with the new recurrence relations is O(M?2N).

Remark 6.2.2. Under the same assumption in Remark
6.1.2, the computational costs for the generalized Newton
bound 6,;(B) and the generalized Newton shift (0,,(B))?
with the new recurrence relations in Section 2.2 are both
O(M?2N).

Algorithm 1 computation of the trace J1(B)

Bl — 10/(b1 * b])
(1) — Bl

J w(l)

for i=2to N by +1 do
Bii — 10/([)2 * bl) 5
F; < ci_1%xci_1xB;

(1) — F, *w(l) + B;

Jej+@)

end for

return J

-
@
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Algorithm 2 computation of diagonals of (BBT)~!
1: Bl — 10/(b1 * bl)
2: w%l) — Bl
3: for i =2 to N by +1 do
4: BZ' — 1.0/(bi * bl)
5: éi—l — Ci—1 ¥Ci—1
6. F,« Ci_ 1% B,
7: ~(1) — F x w(l)
8
9

( ) ~(1) + B
end for

Algorithm 3 computation of diagonals of (BT B)~!
( )

1 «— By
2forz—N—1t01by—1d0
3: FHCA’ *B’
4: ggl)eFl*vi
s o g4 B,
6: end for

Algorithm 4 computation of §§T> (I1<i<N,2<r<
M — 1) in the case of M >3
~(1)

1: g’ «0

2: forr=2to M —1 by +1 do
3 g" o

4. fori=2to N by +1 do

5: tmp < 0

6: fork=1tor—1by +1do
7: tmp + tmp + gfk)l * gfr k)
8: end for

9: §£)<—F*g()1+B,1*g§ )—l—tmp
10:  end for

11: end for

Algorithm 5 computation of gi(r) (1<i<N,2<r<
M —2) in the case of M >4

1: gﬁ)e()

2: forr=2to M —2 by +1 do
3: g%)<—0
fori=N-1to1 by —1do
tmp < 0

for k=1tor—1by +1do

tmp < tmp + gz(+)1 xg"h

end for

(7) « I, *91(;1 + B *gy_l
10: end for
11: end for

)+ tmp
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Algorithm 6 common part for computation of the trace
Jar(B) with the new recurrence relations in the case of
M >2

1: for s =2 to M by +1 do

2: if s(<) M then

(s—1)

3: — BN * Wy

4: forz-N—ltolby—ldo
5: tmp < 0

6: for k=1tos—1by +1do
7 tmp < tmp + g(k) (G k)
8: end for

9: (S)<—F*U()1+B *w( D4 24 tmp
10: end for

11:  end if

12 if s # M — 1 then

13: (S) — By v(s D

14: 1f s = M then

15: J — wl®

16: end if

17: for i =2 to N by +1 do

18: tmp <0

19: for k=1tos—1by +1do
20: tmp < tmp + G« ol*H)
21: end for

22: w  Fxw®) + B« v + 25 tmp
23: 1f s=M then

24: J— J+uw

25: end if

26: end for

27:  end if

28: end for

Algorithm 7 computation of the trace J2(B) with the new
recurrence relations

1: call Algorithm 2

2: (1) «— B

3: forz*Nfltolbyfldo
4: F;, + C * B

5: 81 — F; *U(+)1+B

6: end for

7: call Algorithm 6

8: return J

Algorithm 8 computation of the trace J3(B) with the new
recurrence relations
1: call Algorithm 2
call Algorithm 3
call Algorithm 4
call Algorithm 6
return J
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Algorithm 9 computation of the trace Jy;(B) with the
new recurrence relations in the case of M > 4

1: call Algorithm 2
call Algorithm 3
call Algorithm 4
call Algorithm 5
call Algorithm 6
return J

6.3. A REDUCTION OF THE NUMBER OF OPERATIONS

The recurrence relations for computing 91'(2) (1<i<N-1)

in Definition 2.2.2 can be rearranged as follows.

92 = Figz(i)l +Biagl) + 952191( )
= Figz(i)1 + (Biy1 + gi(Jr)l)gz(l)

= Figi?) + e

(1<i<N-1).
Similarly, the recurrence relations for computing g§2) (2<
i < N) in Definition 2.2.3 can be rearranged as follows.

3 = Fg® + wlP g (2<i<N).

By these rearrangements, the number of multiplication and
addition are reduced from three times to twice and from
twice to once, respectively. Moreover, for r = 3,4,...,
the recurrence relations (23) in Definition 2.2.2 and (24) in
Definition 2.2.3 can be rewritten as follows,

o) = Fg®, +

1) (r—k)
z+1 H—lgzr + Zgz-g-lg "

(1<2<N—1)

gz(r) _ Figz@l +w Z Z(k)lgl(r k)
(2 <i<N).

These modified recurrence relations require less number
of multiplication and addition by once compared with the
original recurrence relation (23) or (24).

Let us consider the following relationships.

B +2g" = oV + gtV (1<i<N-1),

B +25" = wM 4 gV

7

(2 <i < N).

See Remark 2.2.4. For M > 2, the modified recurrence
relations for computing v( ) (1 <i< N-1)and w( )
(2 <i< N)in Theorem 2.2.5 can be written as follows,

vi(z) = F'U(Z)l + B-wm + Qggl)wgl)

= Fol + @ + gMw 1 <i<N-1),
lé):Fw@g+wa+a¢w¢D
= B + () + 3" @2<i<N),.

By these rearrangements, the number of multiplication is
reduced from four times to twice. For M >3 and 3 < s <
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M, modified relations for computing UES) (1<i<N-1)
and wZ(S) (2 <i < N) in Theorem 2.2.5 can be written as
follows,

s—1

o = Fol + (@ + 9wl +23 " g wi
k=2

(1<i<N-1)

)

i— [ [

s—1

wgs) = Fiw(s)l + (wl(l) + gg”)v(“” +2 Z gik)v(sfk)
k=2

(2<i<N)

By these rearrangements, the number of multiplication is
reduced form s+ 2 to s + 1.

On the other hand, on the old recurrence relations, we
have not found such rearrangement.

6.4. EFFICIENT IMPLEMENTATIONS OF ALGORITHMS

FOR THE CASES OF M =2 AND 3

In this subsection, we consider cases of M = 2 and 3. On
the new recurrence relations in Section 2.2, to reduce the
number of operations, we consider modified new recurrence
relations in Section 6.3. As well as the new recurrence re-
lations in Section 2.2, these modified new recurrence re-
lations are subtraction-free. We perform implementations
of algorithms for computing the traces Jys(B). For each
M, one implementation is based on the old recurrence re-
lations in Section 2.1 and another implementation is based
on the modified new recurrence relations. The numbers of
operations of these implementations are compared.

For i =1,...,N, let b; be recorded in “array” BJi]. For
i=1,...,N—1, let ¢; be recorded in “array” C[i]. In this
discussion, we consider the case where these “arrays” are
not destroyed by “overwriting”. Moreover, we consider the
following devises for numerical computation in information
processing.

e We try to reduce the number of “loops” by the tech-
nique of “loop fusion”.

e We try to raise “register hit rate” or “cash hit rate”
by trial to reduce “working memories”. We avoid use
of an “array” if it is not necessary.

e We try to raise “cash hit rate” by trial to use the same
“variable” or an “element” in an “array” continuously.

e We try to reduce the number of divisions which takes
a longer time than multiplications.

Algorithms for computing the trace J2(B) based on the
old and the modified new recurrence relations are shown
in Algorithms 10 and 11, respectively. The numbers of op-
erations are shown in Table 1. Algorithms for computing
the trace J3(B) based on the old and the modified new
recurrence relations are shown in Algorithms 12 and 13,
respectively. The numbers of operations are shown in Ta-
ble 2. Among these implementations, the traces Jo(B) and

Journal of Math-for-Industry, Vol. 4 (2012A-8)

J3(B) are computed by the implementations based on the
modified new recurrence relations in less number of opera-
tions than by those based on the old recurrence relations.
We see Algorithms 11 and 13 are better than Algorithms
10 and 12, respectively.

Table 1: Comparison of the number of operations in com-
putation of Jy(B)

| Algo. 10 (old)  Algo. 11 (new)

addition 5N —5 5N —5
subtraction 2N — 2 0
multiplication 9N — 6 8N —6
division N N

Table 2: Comparison of the number of operations in com-
putation of J3(B)

| Algo. 12 (old)  Algo. 13 (new)

addition 8N —8 9N — 8
subtraction 5N — 4 0
multiplication 14N — 8 14N — 8
division N N

Algorithm 10 An implementation of an algorithm for
computing the trace Jo(B) with a method based on the
old recurrence relations

1: IB[N] + 1.0/(B[N] *B[N]) : By

2. D[N] « IB[N] oy

3: fori=N—-1to1by —1do

4:  SC[i] « CJi] = C[g] e

5. IB[i] + 1.0/(B[i] * BJi]) . B;

6. Dli] < IB[i]  (SC[i] * D[i + 1] + 1.0) : vV

7: end for

8 W2« IB[1]«D[1] : w'?

9: W1 « IB[1] iV

10: Z1 + 2.0 x D[1] : zgl)

11: J < W2

12: for i =2 to N by +1 do

13 Z1 4 Z1+ 2.0 (D[i] — W1) ;2
14: W2« IB[i]  (SC[i — 1] x W2+ Z1 — D[i]) : w?
15 W1« IB[i] * (SC[i — 1] * W1 + 1.0) c M
16:  J+—J+W2

17: end for

18: return J

7. CONCLUDING REMARKS

In this paper, new recurrence relations for computing diag-
onals of (BT B)M)~! and ((BBT)M)~! are derived start-
ing from the old ones in [4]. From these diagonals, the
trace Jys(B) can be obtained. Moreover, the generalized
Newton bound 6, (B) of order M, which is a lower bound
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Algorithm 11 An implementation of an algorithm for
computing the trace Jo(B) with a method based on the

new recurrence relations

—_

: IB[N] + 1.0/(B[N] = B[N])
D[N] « IB[N] oy
:fori=N-1to1lby —1do
SC[i| + CJ[i] = C[i]
IBJ[i] «+ 1.0/(BJ[i] = BJi])
D[i] «+ IB[i] * (SC[¢] * D[i + 1] + 1.0)
end for
W1 « IB[1] :wlt
W2« W1D[1] : w?
J— W2
for i =2 to N by +1 do
FW < SC[i — 1]  IBJi]
H1 <+ FWx W1
W1 « H1 +IBJi]
W2 ¢+ FW % W2 4 (W1 + H1)  DJ[i]
J—J+ W2
end for
return J

_ = =
Moo

—_ =

e e

)
=0

S

s/—\m‘
RS
=

Algorithm 12 An implementation of an algorithm for
computing the trace J3(B) with a method based on the

old recurrence relations

—

. IB[1] «+ 1.0/(B[1] * B[1])
D[1] « IB[1]

: for i =2 to N by +1 do
SCli — 1]+ Cli — 1] * C[i — 1]
IB[i] + 1.0/(B[¢] = B[i])

end for

Z + 2.0 % D[N] : 2

D[N] « IB[N]*D[N] : v'&

R + IB[N] ol

: A[N] ~—7Z—-R

fori=N—-1to1by —1do
7+« Z+2.0+ (D[] - R)

_ = e
M2

_ =

R «+ IBJ[é] % (SC[i] * R + 1.0)
Alil«+Z-R
end for
W« IB[1]+D[1] : w'®
R« IB[1] xR
Z+20«D[1]  : 2z
cJ+ W
: for i =2 to N by +1 do
Z+7+20x(D[i] —R)
W « IB[i] x (SC[i — 1] * W + Z — D[i])
R + IBJ[i] % (SC[i — 1] *x R + A[i])
J+—J+W
end for
return J

— e

e
2)

NN DN NN NN N =
[ B T A R eul

D[i] + IBJi] * (SC[i — 1] + D[i — 1] + 1.0)

D[i] - IB[i] * (SC[i] * D[i + 1] + Z — D[i]) ;. No)

)

2
i—

. B;
w

1

0

7

1)

2

il

2
Q
(2

=

Lw
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Algorithm 13 An implementation of an algorithm for
computing the trace Js(B) with a method based on the
new recurrence relations

[y

10:
11:

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

H2[1] < 0.0 L gy

IB[1] + 1.0/(B[1] *B[1]) : By

A[l] + IB[1] . By + 23V
W1[1] « A[1] iV

for i=2to N by +1 do
SCli =1« C[i =1 *C[i —1] : ¢,

IB[i] + 1.0/(B[i] * B[i]) : B;
FWI[i] + SC[i — 1]  IBJ{] . Fy
Afi] + FW[i] * W1[i — 1] g
H2[i] + FW[i] « H2[i — 1] + W1[i — 1] x A[i] : §®
W1[i] < A[i] + IBJi] c M
Ali] < A[i] + W1[i] : By + 25"
end for
J + IB[N] X
K « WI1[N] %] R

A[N] + A[N]*K + 2.0 « H2[N] % J
fori=N—-1to1lby —1do

FV « SC[i] = IB[¢] D F

Gl <+ FV=x] : ggl)
J « G1 + IBJ[i] (M
K+ FV«K+ (J+G1)«W1[i] : 0

All] «— Ali] * K+ 2.0« H2[i] * J
end for
K+ IB[1]*K : w§3)
J+ K
for i =2 to N by +1 do
K« FW[i] « K+ Ali] : w®
J+—J+K
end for
return J
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of the minimal singular value op,in(B) of B, is computed
from the trace Jas(B). As is shown in [4], the generalized
Newton bounds increase monotonically with increase of M,
namely, 65;(B) of larger M gives a better lower bound
of omin(B). Different from the old recurrence relations
in [4], the new recurrence relations are subtraction-free.
Namely, they consist only addition, multiplication and di-
vision among positive quantities. Therefore, any possibility
of cancellation error is clearly excluded.

Computational cost for the trace Jy;(B) with the old
and the new recurrence relations are shown to be O(MN)
and O(M?2N), respectively. In the cases of M = 2 and 3,
efficient implementations of the algorithms for computing
the traces Jys(B) are also performed. Though the order
of computational cost for the trace Jy(B) with the new
recurrence relations is higher than that with the old recur-
rence relations, the implementations for M = 2 and 3 based
on the modified new recurrence relations require less num-
ber of operations than those based on the old recurrence
relations.

The square of the generalized Newton bound 6;(B) of
order M can be used as a shift of origin in the dqds algo-
rithm and the mdLVs algorithm which are singular value
computation algorithms. Therefore, a shift in terms of
(0a7(B))? is named the generalized Newton shift of order
M. Since 0)(B) increases monotonically with increase of
M, the dqds and the mdLVs algorithms with the general-
ized Newton shift of higher order M are expected to con-
verge faster. However, such shift itself needs more compu-
tational cost than that of lower order M. There has to be
a trade-off between convergence speed and computational
cost.

A shift strategy for the mdLVs algorithm, which utilizes
the traces Ji(B) and J3(B), is discussed in [8]. Another
shift strategy for the dqds algorithm, which is advanced
from the one in [8] and utilizes the traces J;(B) and J2(B),
will be discussed in [9]. Asymptotic convergence analysis
of the dqds algorithms with the generalized Newton shift
and another approach for computing the traces Jy (B) will
be discussed in the subsequent papers.

APPENDIX

Proof of Lemma 3.1.1. First, we discuss in the case of 1 <
i <N, 0<p<pandi+pu<j<N. When p = p, it
is obvious that Sj;,; = 1-Siyu; = When
p < i, by applying

Bi,u,pSier’j-

b;
Siv1j = —_5i;

(2

(1<i<j<N)

in Eq. (33) to Si1,,; once or repeatedly, we have the equa-
tion Sitp; = Biu,pSites-

Secondly, we discuss the case of 1 <i < N, 0<p<pu<
N —iand 1 <j <144 p. When p = p, it is obvious that
Siivn = 1-Sjitu = ViupSjitp- When p < u, by applying

Sjit1 = =35 (1<j<i<N-1)

i+1
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obtained from Eq. (33) to Sj,;, once or repeatedly, we
have the equation Sj i+ = Vi u,pSj,itp- O

Proof of Lemma 3.1.2. When £ = p, then it is obvious that
Vo161 =1=7 e When & <y, then we have

p—1 Iz
%2“’“,1,5,1 = H Fiivi= H Fipy = 'Viu,ﬁ
v=¢ Vi=E+1
from Eq. (38). O

Proof of Lemma 3.1.3. 1t holds

_Xll_Z’yZ,;LO

from the definitions (43) and (46).
Eq. (33) and Lemma 3.1.1 lead

b' 2

2 a2 _ 2 i

S i = Ci <_c-S“+“>
1

= b2 (Yi,u,05:,0)° =

Therefore, since S is an upper triangle matrix and SS7 =
V)| we have

N—i N—i

Z 2 _ 2 : 2 § ’ L T
%,M,O - G Sz+1 it T G S1+1,l+usi+u,i+1

p=1 pn=1

_ 2
- Z SH‘LP pz-‘rlfc ZS1+1P pyi+1

p=i+1

HO (v

Yowo (LSn<N-—i).

27 (1) _ 2.1
Civi—&-l,i+1 CiViy1- ]

Proof of Lemma 3.1.4. From Eq. (38), it can be readily
verified that

w

-, N

Finrfy =[] Fiw
v=1

for1<i<N—-1land1l<pu <N —i From this relation
and the definition of x; x, we have

N—i
2
Yipl = z+1 % 0 =
H=A

for1<i<N—-land1<A<N —i. O

2
= Yiu,0

z+1Xz A

Proof of Lemma 3.1.5. For N —i+1 < X < N, it is trivial
that
Xit1,a—1 = Xi,x =0
from the definition (46).
For 1 < X < N — i, we have

N—i—1 N—i—1
_ _ 2 _ 2
Xi+1,A-1 = Yit1,p,0 = Vi,p+1,1
;1,—/\71 p=A—1
= E ’Yz,,u 1= z+1Xl A

with consideration of Lemmas 3.1.2 and 3.1.4. O
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Proof of Lemma 5.1.1. From Eq. (44) and Definition 2.2.2,
it is obvious that

ByHG TV (x) =0=gy r=12,..). O

Proof of Lemma 5.1.2. For 1 < i < N — 1, considering
Lemma 3.1.3 and Definition 2.2.2, it holds

BHO0) = Bl = Rl = 4. O
Proof of Lemma 5.1.3. From Definition 2.2.2, we see

gl =BrgiT) (r=2.3,.). (65)

For r =1,2,..., since it holds

H](\?)_M(X) = hn-1,1(H" D (x))
& (r=1)
BN+ -1 e HN 16 (X)

£=1
. r—1

= BN’YJQ\/—l,l,lHJ(\/—L)l(X)
- -1

= BNH1(\7/071,)1(X)7

ki
1

we have

By aHY) () = By By H L (0. (66)

It holds By_ 1H(7 ) 1x) = g](\,) , for r = 1,2,... from
Lemma 5.1.2 and Eqs (65) and (66). O

Proof of Lemma 5.1.5. For r =1,2,..., it holds

hiy)\(K(T)) = hix (Fz+1H( )( ) éiH(T_l)(X)

% k—1
—C; ZHZ'(+1,1)(X
k=1

_ FH_IH(?"-‘rl)( )

k—1
-G ZHZ(JFI 1)

= Ki(:\Jrl + CiHi+1,1(X)Hi(g\)(X)- O

VH “’”(x))
CiH (x)

H(r+1 k) (X)
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