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Abstract. On an N × N upper bidiagonal matrix B, where all the diagonals and the upper
subdiagonals are positive, and its transpose BT , it is shown in the recent paper [4] that quantities
JM (B) ≡ Tr(((BTB)M )−1) (M = 1, 2, . . . ) gives a sequence of lower bounds θM (B) of the minimal
singular value of B through θM (B) ≡ (JM (B))−1/(2M). In [4], simple recurrence relations for
computing all the diagonals of ((BTB)M )−1 and ((BBT )M )−1 are also presented. The square of
θM (B) can be used as a shift of origin in numerical algorithms for computing all the singular values
of B. In this paper, new recurrence relations which have advantages over the old ones in [4] are
presented. The new recurrence relations consist of only addition, multiplication and division among
positive quantities. Namely, they are subtraction-free. This property excludes any possibility of
cancellation error in numerical computation of the traces JM (B). Computational cost for the trace
JM (B) (M = 1, 2, . . . ) and efficient implementations for J2(B) and J3(B) are also discussed.
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1. Introduction

On numerical problem of matrix singular values, compu-
tation of a lower bound of the minimal singular value is
important in both theory and applications. For example,
in the dqds (differential quotient difference with shift) algo-
rithm [1] and the mdLVs (modified discrete Lotka-Volterra
with shift) algorithm [3] for computing all the singular val-
ues, the square of such a bound can be used as a shift of
origin. Generally speaking, choice of larger lower bound
brings larger acceleration effect on convergence of the al-
gorithms. Therefore, it is desirable to obtain larger lower
bound with less computational cost.
Let us consider an N × N (N ≥ 2) real upper bidiag-

onal matrix B = (Bi,j), where all the diagonals and the
upper subdiagonals are positive. Let BT be the transpose
of B. Let the singular values of B be σ1(B), . . . , σN (B).
Since all the upper subdiagonals of B are positive, the
singular values are simple [6, p. 124]. Thus, we can set
σ1(B) > · · · > σN (B) > 0 without losing generality. In the
recent paper [4], a sequence of lower bounds of the min-
imal singular value σN (B) of B obtained from conserved
quantities

JM (B) ≡ Tr(((BTB)M )−1) (M = 1, 2, . . . )

of the discrete finite Toda equation [2] are discussed. Such
lower bounds are given as

θM (B) ≡ (JM (B))−
1

2M (M = 1, 2, . . . ).

For a fixed M , the bound θM (B) is named the generalized
Newton bound of order M . These lower bounds increase

monotonically and converge to σN (B) asM goes to infinity
[4, Theorem 3.1], that is,

θ1(B) < θ2(B) < · · · < σN (B), (1)

lim
M→∞

θM (B) = σN (B). (2)

For an arbitrary positive integer M , the lower bound
θM (B) is obtained by applying one iteration of the well-
known Newton method to the characteristic equation

det((BTB)M − λI) = 0, (3)

where I is the N × N unit matrix, starting from λ = 0.
In singular value computation, a shift of origin in the
dqds algorithm given as the square of the Newton bound
θ1(B) and a method for computing θ1(B) by using recur-
rence relations are discussed by Fernando and Parlett [1].
Recurrence relations for computing diagonals of inverses
((BTB)M )−1 and ((BBT )M )−1, which can be used to com-
pute the lower bound θM (B), are also presented in [4]. Note
that for M ≥ 2, subtraction is included in these recurrence
relations.
Since θM (B) < σN (B), (θM (B))2 can be used as a shift

of origin in the dqds and the mdLVs algorithms. Let us
call (θM (B))2 the generalized Newton shift of order M .
In this paper, new recurrence relations are presented

which have advantages compared to those in [4]. The
new recurrence relations are shown to be subtraction-free
though they are derived from those in [4]. Namely, these
recurrence relations for diagonals of inverses ((BTB)M )−1

and ((BBT )M )−1 consist of only addition, multiplication
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and division among positive quantities. Therefore, cancel-
lation error cannot occur in computation of the diagonals
of ((BTB)M )−1 and ((BBT )M )−1 and the trace JM (B).
Computational cost for computation of the trace JM (B)
by the old and the new recurrence relations are shown to
be O(MN) and O(M2N), respectively. In the cases of
M = 2 and 3, efficient implementations of algorithms for
computing JM (B) are presented.

This paper is organized as follows. The old recurrence
relations found in [4] are reviewed in Section 2. The new re-
currence relations which are subtraction-free are described
at the end of Section 2. In Section 3, as a preliminary of the
proof, lemmas for derivation of the new recurrence relations
are given. Proof of the new recurrence relations is given in
Sections 4 and 5. In Section 6, computational costs for
the traces JM (B) by the old and the new recurrence rela-
tions are shown to be O(MN) and O(M2N), respectively.
Efficient implementations of algorithms for computing the
traces J2(B) and J3(B) are also performed. Section 7 is
devoted for concluding remarks.

2. The old and new recurrence
relations

In this section, we give a brief review on the old recurrence
relations found in [4] and present an expression of the new
ones. Let the diagonal and the upper subdiagonal in the
i-th row of B be denoted by bi and ci, respectively, that is,{

bi ≡ Bi,i > 0 (1 ≤ i ≤ N),

ci ≡ Bi,i+1 > 0 (1 ≤ i ≤ N − 1).

Let the superscript T of a matrix denote its transpose. For
a fixed positive integer M and integers m (0 ≤ m ≤ M)
and q (0 ≤ q ≤M − 1), let us set
V (m) = (V

(m)
i,j ) ≡ ((BTB)m)−1,

W (m) = (W
(m)
i,j ) ≡ ((BBT )m)−1,

X(q) = (X
(q)
i,j ) ≡ (B(BTB)q)−1 = ((BBT )qB)−1,

Y (q) = (Y
(q)
i,j ) ≡ (X(q))T .

(4)

For simplicity, we write the diagonals of these matrices as

v
(m)
i = V

(m)
i,i , w

(m)
i = W

(m)
i,i , x

(q)
i = X

(q)
i,i and y

(q)
i = Y

(q)
i,i

for 1 ≤ i ≤ N . Let us introduce quantities z
(q)
i for 1 ≤ i ≤

N and 0 ≤ q ≤M − 1 defined as

z
(q)
i ≡ bi(x(q)i + y

(q)
i ). (5)

2.1. The old recurrence relations

In this subsection, we describe old results in [4].

The following theorem holds.

Theorem 2.1.1. Let M be a fixed positive integer. Let p
and q be integers such that 1 ≤ p ≤ M and 0 ≤ q ≤ M −
1, respectively. As a formula for computing diagonals of

((BTB)M )−1 and ((BBT )M )−1 through a finite number of
arithmetics, the following simple recurrence relations hold.

v
(0)
i = 1 (1 ≤ i ≤ N), (6)

w
(0)
i = 1 (1 ≤ i ≤ N), (7)

v
(p)
N =

1

b2N
w

(p−1)
N , (8)

v
(p)
i =

1

b2i
(c2i v

(p)
i+1 + z

(p−1)
i − w(p−1)

i ) (9)

(1 ≤ i ≤ N − 1),

w
(p)
1 =

1

b21
v
(p−1)
1 , (10)

w
(p)
i =

1

b2i
(c2i−1w

(p)
i−1 + z

(p−1)
i − v(p−1)

i ) (11)

(2 ≤ i ≤ N),

z
(q)
1 = 2v

(q)
1 , (12)

z
(q)
i = z

(q)
i−1 + 2(v

(q)
i − w

(q)
i−1) (2 ≤ i ≤ N). (13)

The following relations hold.

z
(q)
N = 2w

(q)
N , (14)

z
(q)
i = z

(q)
i+1 + 2(w

(q)
i − v

(q)
i+1) (1 ≤ i ≤ N − 1) (15)

Instead of Eqs. from (6) to (13), we can use Eqs. from
(6) to (11), (14) and (15) as a formula for computing the
diagonals of ((BTB)M )−1 and ((BBT )M )−1.

We have the following remark.

Remark 2.1.2. For p = 1, the recurrence relations from
(8) to (11) in Theorem 2.1.1 are simplified to the recurrence
relations

v
(1)
N =

1

b2N
, (16)

v
(1)
i =

1

b2i
(c2i v

(1)
i+1 + 1) (1 ≤ i ≤ N − 1), (17)

w
(1)
1 =

1

b21
, (18)

w
(1)
i =

1

b2i
(c2i−1w

(1)
i−1 + 1) (2 ≤ i ≤ N). (19)

In the case of M = 1, Theorem 2.1.1 is reduced to these
recurrence relations.

On computation of diagonals of inverses (BBT )−1 and
((BBT )2)−1, there exist some preceding works in numerical
analysis.

Remark 2.1.3. A formula related to Eqs. from (16) to
(19) for computing diagonals of the inverse (BBT )−1 has
been known. See [1, 5, 7], for example. On computation of
diagonals of ((BBT )2)−1, von Matt [5] presented another
formula.

2.2. New result: subtraction-free recurrence
relations

Let us introduce quantities B̌i (1 ≤ i ≤ N), Fi (1 ≤ i ≤
N − 1) and F̃i (2 ≤ i ≤ N) as follows.
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Definition 2.2.1.

B̌i =
1

b2i
(1 ≤ i ≤ N), (20)

Fi =
c2i
b2i

= c2i B̌i (1 ≤ i ≤ N − 1), (21)

F̃i =
c2i−1

b2i
= c2i−1B̌i (2 ≤ i ≤ N). (22)

Note that all these quantities are positive.

Next, let us introduce quantities g
(r)
i and g̃

(r)
i defined for

1 ≤ i ≤ N and r = 1, 2, . . . .

Definition 2.2.2. The quantities g
(r)
i for 1 ≤ i ≤ N and

r = 1, 2, . . . are defined as follows.

• For i = N and arbitrary positive integer r, g
(r)
N is given

as g
(r)
N = 0.

• For 1 ≤ i ≤ N − 1 and r = 1, g
(1)
i is given as g

(1)
i =

Fiv
(1)
i+1.

• For 1 ≤ i ≤ N − 1 and r = 2, 3, . . . , g
(r)
i is given as

g
(r)
i = Fig

(r)
i+1 + B̌i+1g

(r−1)
i +

r−1∑
k=1

g
(k)
i+1g

(r−k)
i . (23)

Definition 2.2.3. The quantities g̃
(r)
i for 1 ≤ i ≤ N and

r = 1, 2, . . . are defined as follows.

• For i = 1 and arbitrary positive integer r, g̃
(r)
1 is given

as g̃
(r)
1 = 0.

• For 2 ≤ i ≤ N and r = 1, g̃
(1)
i is given as g̃

(1)
i =

F̃iw
(1)
i−1.

• For 2 ≤ i ≤ N and r = 2, 3, . . . , g̃
(r)
i is given as

g̃
(r)
i = F̃ig̃

(r)
i−1 + B̌i−1g̃

(r−1)
i +

r−1∑
k=1

g̃
(k)
i−1g̃

(r−k)
i . (24)

Remark 2.2.4. The recurrence relations in Remark 2.1.2
can be rewritten with the quantities defined by Definitions
from 2.2.1 to 2.2.3 as follows.

v
(1)
N = B̌N , (25)

v
(1)
i = Fiv

(1)
i+1 + B̌i = g

(1)
i + B̌i (1 ≤ i ≤ N − 1), (26)

w
(1)
1 = B̌1, (27)

w
(1)
i = F̃iw

(1)
i−1 + B̌i = g̃

(1)
i + B̌i (2 ≤ i ≤ N). (28)

Then, the main theorem of this paper is described.

Theorem 2.2.5. For M ≥ 2, the diagonals v
(s)
i and w

(s)
i

of ((BTB)s)−1 and ((BBT )s)−1, respectively, for 1 ≤ i ≤

N and 2 ≤ s ≤M are computed by the recurrence relations

v
(s)
N = B̌Nw

(s−1)
N , (29)

w
(s)
1 = B̌1v

(s−1)
1 , (30)

v
(s)
i = Fiv

(s)
i+1 + B̌iw

(s−1)
i + 2

s−1∑
k=1

g
(k)
i w

(s−k)
i (31)

(1 ≤ i ≤ N − 1),

w
(s)
i = F̃iw

(s)
i−1 + B̌iv

(s−1)
i + 2

s−1∑
k=1

g̃
(k)
i v

(s−k)
i (32)

(2 ≤ i ≤ N),

with the recurrence relations from (25) to (28).

From Definitions from 2.2.1 to 2.2.3, Remark 2.2.4 and

Theorem 2.2.5, all the diagonals v
(M)
i of ((BTB)M )−1 and

w
(M)
i of ((BBT )M )−1 (1 ≤ i ≤ N , M = 1, 2, . . . ) are

computed through only addition, multiplication and divi-
sion among positive quantities. Namely, the recurrence
relations are subtraction-free. Let us call them the new
recurrence relations. On the other hand, let us call the
recurrence relations in Theorem 2.1.1 and Remark 2.1.2
the old recurrence relations. It is to be noted that both
old and new give the traces Tr(((BTB)M )−1) through the
diagonals of ((BTB)M )−1 or ((BBT )M )−1.

3. Preparation for the proof of the
theorem

In this section, we show lemmas for derivation of the new
recurrence relations in Section 2.2. For convenience, let us
represent the inverse of B with the notation

S = (Si,j) ≡ B−1.

S is an upper triangle matrix, and the elements of S have
the following relations [4].

Si,j = 0 (1 ≤ j < i ≤ N),

Si,j =
1

bi
(1 ≤ i = j ≤ N),

Si+1,j = −
bi
ci
Si,j (1 ≤ i < j ≤ N),

Si,j = −
cj−1

bj
Si,j−1 (1 ≤ i < j ≤ N).

(33)

In this section, M is an arbitrary positive integer. The
elements of S, V (p), W (p), X(q) and Y (q) for 1 ≤ p ≤ M
and 0 ≤ q ≤M − 1 satisfy the following relations.

Lemma 3.0.1. The elements of V (p) and W (p) for 1 ≤
p ≤M satisfy

V
(p)
i,j =

N∑
k=j

Sj,kX
(p−1)
i,k =

N∑
k=i

Si,kY
(p−1)
k,j ,

W
(p)
i,j =

i∑
k=1

Sk,iX
(p−1)
k,j =

j∑
k=1

Sk,jY
(p−1)
i,k ,

(34)
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for 1 ≤ i ≤ N and 1 ≤ j ≤ N . In particular, on the
diagonals of V (p) and W (p) for 1 ≤ p ≤M , it holds

v
(p)
i = V

(p)
i,i =

N∑
k=i

Si,kX
(p−1)
i,k =

N∑
k=i

Si,kY
(p−1)
k,i ,

w
(p)
i =W

(p)
i,i =

i∑
k=1

Sk,iX
(p−1)
k,i =

i∑
k=1

Sk,iY
(p−1)
i,k

(35)

for 1 ≤ i ≤ N .

Proof. Since the relationships V (p) = X(p−1)ST = SY (p−1)

and W (p) = STX(p−1) = Y (p−1)S hold for 1 ≤ p ≤M and
S is an upper triangle matrix, we have Eq. (34). Eq. (35)
is directly obtained by substituting j = i to Eq. (34).

3.1. Lemmas—Part I

Proof of lemmas in this subsection is given in Appendix.

For 1 ≤ i ≤ N and 0 ≤ ρ ≤ µ ≤ N − i, let βi,µ,ρ and
γi,µ,ρ be defined as

βi,µ,ρ ≡


µ∏

ν=ρ+1

(
−bi+ν−1

ci+ν−1

)
(ρ < µ),

1 (ρ = µ),

(36)

γi,µ,ρ ≡


µ∏

ν=ρ+1

(
−ci+ν−1

bi+ν

)
(ρ < µ),

1 (ρ = µ),

(37)

respectively. We have

Lemma 3.1.1. For 1 ≤ i ≤ N and 0 ≤ ρ ≤ µ ≤ N − i,
the following relationships among elements of S hold.

Si+µ,j = βi,µ,ρSi+ρ,j (i+ µ ≤ j ≤ N),

Sj,i+µ = γi,µ,ρSj,i+ρ (1 ≤ j ≤ i+ ρ).

This lemma represents some relationships between two
elements among the diagonal and the upper triangle part
of S which are in the same row or column. We also con-
sider the case where these two elements are identical. This
consideration is reflected to the definitions (36) and (37).
These definitions help us to express equations in a simpler
form. Note that

γ2i,µ,ρ =

{∏µ
ν=ρ+1 F̃i+ν (ρ < µ),

1 (ρ = µ).
(38)

For the quantities γi,µ,ρ, the following lemma holds.

Lemma 3.1.2. For 1 ≤ i ≤ N −1 and 1 ≤ ξ ≤ µ ≤ N − i,
it holds

γ2i+1,µ−1,ξ−1 = γ2i,µ,ξ.

Let us consider a set of quantities {φi,ξ} defined for 1 ≤
i ≤ N − 1 and 1 ≤ ξ ≤ N − i. Let us introduce linear
functions hi,λ(φ) defined for 1 ≤ i ≤ N and 1 ≤ λ ≤ N

and computed from such quantities φi,ξ (1 ≤ i ≤ N−1, 1 ≤
ξ ≤ N − i). The definition of the function hi,λ(φ) is

hi,λ(φ) ≡


N−i∑
µ=λ

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξφi,ξ (λ ≤ N − i),

0 (λ > N − i).
(39)

These functions are linear with respect to the quantities
φi,ξ. Suppose that the quantities φi,ξ in Eq. (39) are given

with another sets of quantities {φ(j)
i,ξ } (j = 1, 2, . . . ) defined

for 1 ≤ i ≤ N − 1 and 1 ≤ ξ ≤ N − i by φi,ξ =
∑

j a
(j)φ

(j)
i,ξ

where the coefficients a(j) (j = 1, 2, . . . ) are invariable for
all of ξ such that 1 ≤ ξ ≤ N − i. Then, it holds

hi,λ(φ) = hi,λ(
∑

j a
(j)φ(j)) =

∑
j a

(j)hi,λ(φ
(j)). (40)

When λ > N − i, then the linearity (40) is obvious since
hi,λ(φ) is identically zero. When λ ≤ N − i, then we can
readily verify the linearity (40) from the definition (39).
Let us consider the case where all of φi,ξ for 1 ≤ i ≤ N−1

and 1 ≤ ξ ≤ N − i are zero. From the definition (39), we
have

hi,λ(0) = 0 (1 ≤ i ≤ N, 1 ≤ λ ≤ N). (41)

Next, let {ϕi,λ} denote a set of quantities defined for
1 ≤ i ≤ N and 1 ≤ λ ≤ N . We make an additional
condition to ϕi,λ that they satisfy

ϕi,λ = 0 (1 ≤ i ≤ N, N − i+ 1 ≤ λ ≤ N). (42)

Then, let us introduce quantities H
(r)
i,λ (ϕ) defined for 1 ≤

i ≤ N , 1 ≤ λ ≤ N and r = 0, 1, 2, . . . . Through the

function hi,λ, the quantity H
(r)
i,λ (ϕ) is defined as{

H
(0)
i,λ (ϕ) ≡ ϕi,λ (r = 0),

H
(r)
i,λ (ϕ) ≡ hi,λ(H(r−1)(ϕ)) (r = 1, 2, . . . ).

(43)

As is shown in Section 5, among these quantities, only H
(r)
i,1

(r = 1, 2, . . . ) are directly relevant to the computation of

the conserved quantities. Note that the set {H(r)
i,ξ (ϕ)} (1 ≤

i ≤ N − 1, 1 ≤ ξ ≤ N − i) can be used as quantities φi,ξ

in Eq. (39) for each r (= 0, 1, 2, . . . ). From the definitions
(39) and (43) and the condition (42), when λ > N − i, it
is obvious that

H
(r)
i,λ (ϕ) = 0 (r = 0, 1, 2, . . . ). (44)

Let us consider the case where all of ϕi,ξ for 1 ≤ i ≤ N
and 1 ≤ ξ ≤ N are zero. From the definition (43) and
Eq. (41), we readily obtain

H
(r)
i,λ (0) = 0 (45)

for 1 ≤ i ≤ N , 1 ≤ λ ≤ N and r = 0, 1, 2, . . . .
Let us introduce constants χi,λ defined for 1 ≤ i ≤ N

and 0 ≤ λ ≤ N . Depending on i and λ, these constants
χi,λ are defined as

χi,λ ≡


N−i∑
µ=λ

γ2i,µ,0 (λ ≤ N − i),

0 (λ > N − i).
(46)
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Note that the set {χi,λ} (1 ≤ i ≤ N, 1 ≤ λ ≤ N) can be
used as quantities ϕi,λ in Eq. (43). Therefore, note that
the set {χi,ξ} (1 ≤ i ≤ N − 1, 1 ≤ ξ ≤ N − i) can be used
as quantities φi,ξ in Eq. (39).

The following three lemmas hold.

Lemma 3.1.3. For 1 ≤ i ≤ N − 1, it holds

H
(0)
i,1 (χ) = χi,1 =

N−i∑
µ=1

γ2i,µ,0 = c2i v
(1)
i+1.

Lemma 3.1.4. For 1 ≤ i ≤ N − 1 and 1 ≤ λ ≤ N − i, it
holds

N−i∑
µ=λ

γ2i,µ,1 = F̃−1
i+1χi,λ.

Lemma 3.1.5. For 1 ≤ i ≤ N − 1 and 1 ≤ λ ≤ N , it
holds

χi+1,λ−1 = F̃−1
i+1χi,λ.

3.2. Lemmas—Part II

In this subsection, we prepare Lemmas from 3.2.1 to 3.2.5
which correspond to Lemmas from 3.1.1 to 3.1.5 in the
previous subsection. Proof of these lemmas is given in a
similar way to that of Lemmas from 3.1.1 to 3.1.5.

For 1 ≤ i ≤ N and 0 ≤ ρ ≤ µ ≤ i−1, let β̃i,µ,ρ and γ̃i,µ,ρ
be defined as

β̃i,µ,ρ ≡


µ∏

ν=ρ+1

(
−bi−ν+1

ci−ν

)
(ρ < µ),

1 (ρ = µ),

γ̃i,µ,ρ ≡


µ∏

ν=ρ+1

(
−ci−ν

bi−ν

)
(ρ < µ),

1 (ρ = µ),

respectively. The following lemma holds.

Lemma 3.2.1. For 1 ≤ i ≤ N and 0 ≤ ρ ≤ µ ≤ i− 1, the
following relationships among elements of S hold.

Sj,i−µ = β̃i,µ,ρSj,i−ρ (1 ≤ j ≤ i− µ),
Si−µ,j = γ̃i,µ,ρSi−ρ,j (i− ρ ≤ j ≤ N).

Based on a reason similar to what we mentioned about
Lemma 3.1.1, these definitions help us to express equations
in simpler form. Note that

γ̃2i,µ,ρ =

{∏µ
ν=ρ+1 Fi−ν (ρ < µ),

1 (ρ = µ).

For the quantities γ̃i,µ,ρ, the following lemma holds.

Lemma 3.2.2. For 2 ≤ i ≤ N and 1 ≤ ξ ≤ µ ≤ i − 1, it
holds

γ̃2i−1,µ−1,ξ−1 = γ̃2i,µ,ξ.

Let us consider a set of quantities {φ̃i,ξ} defined for 2 ≤
i ≤ N and 1 ≤ ξ ≤ i− 1. Let us introduce linear functions
h̃i,λ(φ̃) defined for 1 ≤ i ≤ N and 1 ≤ λ ≤ N and com-
puted from such quantities φ̃i,ξ (2 ≤ i ≤ N, 1 ≤ ξ ≤ i−1).

The definition of the function h̃i,λ(φ̃) is

h̃i,λ(φ̃) ≡


i−1∑
µ=λ

µ∑
ξ=1

B̌i−ξγ̃
2
i,µ,ξφ̃i,ξ (λ < i),

0 (λ ≥ i).
(47)

Similar to hi,λ(φ), these functions are linear with respect
to the quantities φ̃i,ξ and it holds

h̃i,λ(0) = 0 (1 ≤ i ≤ N, 1 ≤ λ ≤ N).

Next, let {ϕ̃i,λ} denote a set of quantities defined for
1 ≤ i ≤ N and 1 ≤ λ ≤ N . We make an additional
condition to ϕ̃i,λ that they satisfy

ϕ̃i,λ = 0 (1 ≤ i ≤ N, i ≤ λ ≤ N).

Then, let us introduce quantities H̃
(r)
i,λ (ϕ̃) defined for 1 ≤

i ≤ N , 1 ≤ λ ≤ N and r = 0, 1, 2, . . . . Through the

function h̃i,λ, the quantity H̃
(r)
i,λ (ϕ̃) is defined as{

H̃
(0)
i,λ (ϕ̃) ≡ ϕ̃i,λ (r = 0),

H̃
(r)
i,λ (ϕ̃) ≡ h̃i,λ(H̃(r−1)(ϕ̃)) (r = 1, 2, . . . ).

(48)

Similarly to the quantities H
(r)
i,λ , among these quantities,

only H̃
(r)
i,1 (r = 1, 2, . . . ) are directly relevant to the com-

putation of the conserved quantities. Note that the set

{H̃(r)
i,ξ (ϕ̃)} (2 ≤ i ≤ N, 1 ≤ ξ ≤ i− 1) can be used as quan-

tities φ̃i,ξ in Eq. (47) for each r (= 0, 1, 2, . . . ). Similarly to

H
(r)
i,λ (ϕ), the following two relations hold. If λ ≥ i, it holds

H̃
(r)
i,λ (ϕ̃) = 0 (r = 0, 1, 2, . . . ).

It holds
H̃

(r)
i,λ (0) = 0

for 1 ≤ i ≤ N , 1 ≤ λ ≤ N and r = 0, 1, 2, . . . .
Let us introduce constants χ̃i,λ defined for 1 ≤ i ≤ N

and 0 ≤ λ ≤ N . Depending on i and λ, these constants
χ̃i,λ are defined as

χ̃i,λ ≡


i−1∑
µ=λ

γ̃2i,µ,0 (λ < i),

0 (λ ≥ i).

Note that the set {χ̃i,λ} (1 ≤ i ≤ N, 1 ≤ λ ≤ N) can be

used as quantities ϕ̃i,λ in Eq. (48). Therefore, note that
the set {χ̃i,ξ} (2 ≤ i ≤ N, 1 ≤ ξ ≤ i − 1) can be used as
quantities φ̃i,ξ in Eq. (47).
The remaining lemmas are as follows.

Lemma 3.2.3. For 2 ≤ i ≤ N , it holds

H̃
(0)
i,1 (χ̃) = χ̃i,1 =

i−1∑
µ=1

γ̃2i,µ,0 = c2i−1w
(1)
i−1.
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Lemma 3.2.4. For 2 ≤ i ≤ N and 1 ≤ λ ≤ i− 1, it holds

i−1∑
µ=λ

γ̃2i,µ,1 = F−1
i−1χ̃i,λ.

Lemma 3.2.5. For 2 ≤ i ≤ N and 1 ≤ λ ≤ N , it holds

χ̃i−1,λ−1 = F−1
i−1χ̃i,λ.

4. Proof of the new recurrence
relations—Step 1

The recurrence relations in Theorem 2.2.5 are obtained by
rearranging the recurrence relations in Theorem 2.1.1 judi-
ciously.
Hereafter, let M ≥ 2 unless we specify the range of M

through this section.
Eqs. (8) and (10) in Theorem 2.1.1 correspond to

Eqs. (29) and (30) in Theorem 2.2.5, respectively. Let us
start from Eq. (13) in Theorem 2.1.1. Let us use symbol
k instead of the symbol i used in Eq. (13). Namely, for
2 ≤ k ≤ N and 0 ≤ q ≤M − 1, it holds

z
(q)
k = z

(q)
k−1 + 2(v

(q)
k − w

(q)
k−1).

Summing both hand sides for k from 2 to i (2 ≤ i ≤ N) and
considering the recurrence relation (12) in Theorem 2.1.1,
we have

z
(q)
i = z

(q)
1 + 2

(
i∑

k=2

v
(q)
k −

i−1∑
k=1

w
(q)
k

)
(49)

= 2v
(q)
1 + 2

(
i∑

k=2

v
(q)
k −

i−1∑
k=1

w
(q)
k

)

= 2

(
i∑

k=1

v
(q)
k −

i−1∑
k=1

w
(q)
k

)

for 2 ≤ i ≤ N and 0 ≤ q ≤M − 1.

4.1. Proof—Part I

The goal of this subsection is to show that it holds

v
(s)
i = Fiv

(s)
i+1 + B̌iw

(s−1)
i + 2

s−1∑
k=1

B̌iH
(k−1)
i,1 (χ)w

(s−k)
i (50)

for 2 ≤ s ≤M and 1 ≤ i ≤ N − 1.
Let us show that it holds

z
(q)
i − w

(q)
i = 2

i∑
k=1

(v
(q)
k − w

(q)
k ) + w

(q)
i (51)

for 1 ≤ i ≤ N and 0 ≤ q ≤ M − 1. For 2 ≤ i ≤ N and
0 ≤ q ≤ M − 1, Eq. (51) is obtained from Eq. (49). For
i = 1 and 0 ≤ q ≤M − 1, Eq. (51) holds since

z
(q)
1 − w

(q)
1 = 2v

(q)
1 − w

(q)
1 = 2(v

(q)
1 − w

(q)
1 ) + w

(q)
1 .

From Lemma 3.0.1, it holds


i∑

k=1

v
(p)
k =

i∑
k=1

N∑
l=k

Sk,lY
(p−1)
l,k ,

i∑
k=1

w
(p)
k =

i∑
k=1

k∑
l=1

Sl,kY
(p−1)
k,l =

i∑
l=1

l∑
k=1

Sk,lY
(p−1)
l,k

for 1 ≤ i ≤ N and 1 ≤ p ≤ M . From these equations, we
have

i∑
k=1

(v
(p)
k − w(p)

k ) =
i∑

k=1

N∑
l=i+1

Sk,lY
(p−1)
l,k (52)

=
i∑

k=1

N−i∑
µ=1

Sk,i+µY
(p−1)
i+µ,k

for 1 ≤ i ≤ N − 1 and 1 ≤ p ≤ M . Let us introduce ∆
(t)
i,λ

defined for 1 ≤ i ≤ N , 1 ≤ λ ≤ N and 0 ≤ t ≤ M . The

definition of ∆
(t)
i,λ is

∆
(t)
i,λ ≡


i∑

k=1

N−i∑
µ=λ

µ∑
ξ=1

1

bi+ξ
γ2i,µ,ξSk,i+ξV

(t)
i+ξ,k (λ ≤ N − i),

0 (λ > N − i).
(53)

Note that the set {∆(t)
i,λ} (1 ≤ i ≤ N , 1 ≤ λ ≤ N) can be

used as quantities ϕi,λ in Eq. (43) for each t (0 ≤ t ≤M).

Therefore, note that the set {∆(t)
i,ξ} (1 ≤ i ≤ N − 1, 1 ≤

ξ ≤ N − i) can be used as quantities φi,ξ in Eq. (39) for
each t (0 ≤ t ≤M). Moreover, since V (0) = I, it holds

∆
(0)
i,λ = 0 (1 ≤ i ≤ N, 1 ≤ λ ≤ N). (54)

The following lemma holds.

Lemma 4.1.1. For 1 ≤ i ≤ N − 1, 1 ≤ λ ≤ N − i and
1 ≤ α ≤M , it holds

i∑
k=1

N−i∑
µ=λ

Sk,i+µY
(α−1)
i+µ,k = χi,λw

(α)
i +∆

(α−1)
i,λ .

Proof. Let µ, k and q be integers such that 1 ≤ µ ≤ N − i,
1 ≤ k ≤ i and 0 ≤ q ≤M − 1, respectively.

Since the relationship Y (q) = STV (q) holds and S is an
upper triangular matrix, we have

Y
(q)
i,j =

N∑
l=1

ST
i,lV

(q)
l,j =

N∑
l=1

Sl,iV
(q)
l,j =

i∑
l=1

Sl,iV
(q)
l,j

for 1 ≤ i ≤ N and 1 ≤ j ≤ N . Considering this result,
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Lemma 3.1.1 and Eq. (33), it holds

Y
(q)
i+µ,k =

i+µ∑
l=1

Sl,i+µV
(q)
l,k

=
i∑

l=1

Sl,i+µV
(q)
l,k +

i+µ∑
l=i+1

Sl,i+µV
(q)
l,k

=
i∑

l=1

γi,µ,0Sl,iV
(q)
l,k +

µ∑
ξ=1

Si+ξ,i+µV
(q)
i+ξ,k

= γi,µ,0

i∑
l=1

Sl,iV
(q)
l,k +

µ∑
ξ=1

γi,µ,ξSi+ξ,i+ξV
(q)
i+ξ,k

= γi,µ,0Y
(q)
i,k +

µ∑
ξ=1

1

bi+ξ
γi,µ,ξV

(q)
i+ξ,k

for 1 ≤ i ≤ N − 1. Then, with consideration of Lemma
3.1.1, it holds

Sk,i+µY
(q)
i+µ,k

= γi,µ,0Sk,i+µY
(q)
i,k +

µ∑
ξ=1

1

bi+ξ
γi,µ,ξSk,i+µV

(q)
i+ξ,k

= γ2i,µ,0Sk,iY
(q)
i,k +

µ∑
ξ=1

1

bi+ξ
γ2i,µ,ξSk,i+ξV

(q)
i+ξ,k

for 1 ≤ i ≤ N − 1. Therefore, with consideration of
Lemma 3.0.1 and the definitions (46) and (53), we obtain

i∑
k=1

N−i∑
µ=λ

Sk,i+µY
(α−1)
i+µ,k

=

i∑
k=1

N−i∑
µ=λ

γ2i,µ,0Sk,iY
(α−1)
i,k +∆

(α−1)
i,λ

=

N−i∑
µ=λ

γ2i,µ,0

( i∑
k=1

Sk,iY
(α−1)
i,k

)
+∆

(α−1)
i,λ

= χi,λw
(α)
i +∆

(α−1)
i,λ

for 1 ≤ i ≤ N − 1, 1 ≤ λ ≤ N − i and 1 ≤ α ≤M .

From Eq. (52), Lemma 4.1.1 and the definition (43), for
1 ≤ i ≤ N − 1 and 1 ≤ u ≤M − 1, we have

i∑
k=1

(v
(u)
k − w(u)

k ) = χi,1w
(u)
i +∆

(u−1)
i,1 (55)

= H
(0)
i,1 (χ)w

(u)
i +∆

(u−1)
i,1 .

From Eqs. (51) and (55), for 1 ≤ i ≤ N − 1 and 1 ≤ u ≤
M − 1, we obtain

z
(u)
i − w(u)

i = 2(H
(0)
i,1 (χ)w

(u)
i +∆

(u−1)
i,1 ) + w

(u)
i .

Therefore, from Eq. (9), for 2 ≤ s ≤M and 1 ≤ i ≤ N − 1,
it holds

v
(s)
i =Fiv

(s)
i+1 + B̌iw

(s−1)
i (56)

+ 2B̌i(H
(0)
i,1 (χ)w

(s−1)
i +∆

(s−2)
i,1 ).

For s = 2 and 1 ≤ i ≤ N − 1, we obtain Eq. (50) by
substituting s = 2 into Eq. (56) and applying Eq. (54).
Before considering the cases of M ≥ 3, we prepare the

following two lemmas.

Lemma 4.1.2. For 1 ≤ i ≤ N , 1 ≤ λ ≤ N and 1 ≤ α ≤
M , it holds

∆
(α)
i,λ = hi,λ(χ)w

(α)
i + hi,λ(∆

(α−1)).

Proof. For 1 ≤ i ≤ N and N − i+ 1 ≤ λ ≤ N , it is trivial

since ∆
(α)
i,λ , hi,λ(χ) and hi,λ(∆

(α−1)) are zero from their
definitions. Then hereafter, in this proof, let i and λ be
integers such that 1 ≤ i ≤ N − 1 and 1 ≤ λ ≤ N − i,
respectively.
Additionally, let ξ be an integer such that 1 ≤ ξ ≤ N − i

in this proof. We see that

i∑
k=1

Sk,i+ξV
(α)
i+ξ,k

=
i∑

k=1

γi,ξ,0Sk,i

N∑
l=i+ξ

Si+ξ,lY
(α−1)
l,k


= γi,ξ,0

i∑
k=1

Sk,i

N−i∑
ρ=ξ

Si+ξ,i+ρY
(α−1)
i+ρ,k


= γi,ξ,0

i∑
k=1

N−i∑
ρ=ξ

Sk,i · βi,ξ,0γi,ρ,0Si,i · Y (α−1)
i+ρ,k

= βi,ξ,0γi,ξ,0Si,i

i∑
k=1

N−i∑
ρ=ξ

Sk,i+ρY
(α−1)
i+ρ,k

with help of Lemmas 3.0.1 and 3.1.1. We have

βi,ξ,0γi,ξ,0Si,i

=

(
ξ∏

ν=1

(
−bi+ν−1

ci+ν−1

))( ξ∏
ν′=1

(
−ci+ν′−1

bi+ν′

))
· 1
bi

=
1

bi+ξ

from Eq. (33) and the definitions (36) and (37). Therefore,
we obtain

i∑
k=1

Sk,i+ξV
(α)
i+ξ,k =

1

bi+ξ
(χi,ξw

(α)
i +∆

(α−1)
i,ξ )

with consideration of Lemma 4.1.1. From this equation

and the definition of ∆
(α)
i,λ , we obtain

∆
(α)
i,λ =

N−i∑
µ=λ

µ∑
ξ=1

(
1

bi+ξ
γ2i,µ,ξ ·

1

bi+ξ
(χi,ξw

(α)
i +∆

(α−1)
i,ξ )

)

=

N−i∑
µ=λ

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξχi,ξ

w
(α)
i

+

N−i∑
µ=λ

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξ∆

(α−1)
i,ξ

= hi,λ(χ)w
(α)
i + hi,λ(∆

(α−1)).
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Lemma 4.1.3. For 1 ≤ i ≤ N , 1 ≤ λ ≤ N , r = 0, 1, 2, . . .
and 1 ≤ α ≤M , it holds

H
(r)
i,λ (∆

(α)) = H
(r+1)
i,λ (χ)w

(α)
i +H

(r+1)
i,λ (∆(α−1)). (57)

Proof. For 1 ≤ i ≤ N and N − i + 1 ≤ λ ≤ N , it is

trivial sinceH
(r)
i,λ (∆

(α)), H
(r+1)
i,λ (χ) andH

(r+1)
i,λ (∆(α−1)) are

zero from their definitions. Then hereafter, in this proof,
let i and λ are integers such that 1 ≤ i ≤ N − 1 and
1 ≤ λ ≤ N − i, respectively.
We here use mathematical induction. For r = 0, Eq. (57)

holds since it holds

H
(0)
i,λ (∆

(α)) = ∆
(α)
i,λ

= hi,λ(χ)w
(α)
i + hi,λ(∆

(α−1))

= hi,λ(H
(0)(χ))w

(α)
i + hi,λ(H

(0)(∆(α−1)))

= H
(1)
i,λ (χ)w

(α)
i +H

(1)
i,λ (∆

(α−1))

with consideration of Lemma 4.1.2. Let k denote an integer
such that 0 ≤ k. If Eq. (57) holds for all r such that
0 ≤ r ≤ k, then, Eq. (57) holds for r = k+ 1 since it holds

H
(k+1)
i,λ (∆(α))

= hi,λ(H
(k)(∆(α)))

= hi,λ(H
(k+1)(χ)w

(α)
i +H(k+1)(∆(α−1)))

= hi,λ(H
(k+1)(χ))w

(α)
i + hi,λ(H

(k+1)(∆(α−1)))

= H
(k+2)
i,λ (χ)w

(α)
i +H

(k+2)
i,λ (∆(α−1)).

Let us consider cases where M ≥ 3. From Lemma 4.1.3,
for 3 ≤ s ≤ M , 1 ≤ i ≤ N − 1 and an integer k such that
2 ≤ k ≤ s− 1, it holds

H
(k−2)
i,1 (∆(s−k)) = H

(k−1)
i,1 (χ)w

(s−k)
i +H

(k−1)
i,1 (∆(s−k−1)).

Summing the both hand sides of this equation from k = 2
to k = s− 1, we have

H
(0)
i,1 (∆

(s−2)) =
s−1∑
k=2

H
(k−1)
i,1 (χ)w

(s−k)
i +H

(s−2)
i,1 (∆(0))

for 3 ≤ s ≤ M and 1 ≤ i ≤ N − 1. Then, from the
definition (43) and Eqs. (45) and (54), we obtain

∆
(s−2)
i,1 =

s−1∑
k=2

H
(k−1)
i,1 (χ)w

(s−k)
i

for 3 ≤ s ≤ M and 1 ≤ i ≤ N − 1. Substituting this
result into Eq. (56), we have Eq. (50) for 3 ≤ s ≤ M and
1 ≤ i ≤ N − 1.
Finally, we have shown that Eq. (50) holds for M ≥ 2,

2 ≤ s ≤M and 1 ≤ i ≤ N − 1.

4.2. Proof—Part II

The goal of this subsection is to show that it holds

w
(s)
i = F̃iw

(s)
i−1 + B̌iv

(s−1)
i + 2

s−1∑
k=1

B̌iH̃
(k−1)
i,1 (χ̃)v

(s−k)
i (58)

for 2 ≤ s ≤M and 2 ≤ i ≤ N .
From Eq. (49), it holds

z
(q)
i − v

(q)
i = 2

i−1∑
k=1

(v
(q)
k − w

(q)
k ) + v

(q)
i (59)

for 2 ≤ i ≤ N and 0 ≤ q ≤M − 1.
From Lemma 3.0.1, it holds

i−1∑
k=1

v
(p)
k =

i−1∑
k=1

N∑
l=k

Sk,lX
(p−1)
k,l ,

i−1∑
k=1

w
(p)
k =

i−1∑
k=1

k∑
l=1

Sl,kX
(p−1)
l,k =

i−1∑
l=1

l∑
k=1

Sk,lX
(p−1)
k,l

for 2 ≤ i ≤ N and 1 ≤ p ≤ M . From these equations, we
have

i−1∑
k=1

(v
(p)
k − w(p)

k ) =
N∑
l=i

i−1∑
k=1

Sk,lX
(p−1)
k,l

=
N∑
l=i

i−1∑
µ=1

Si−µ,lX
(p−1)
i−µ,l

for 2 ≤ i ≤ N and 1 ≤ p ≤ M . Let us introduce ∆̃
(t)
i,λ

defined for 1 ≤ i ≤ N , 1 ≤ λ ≤ N and 0 ≤ t ≤ M . The

definition of ∆̃
(t)
i,λ is

∆̃
(t)
i,λ ≡


N∑
l=i

i−1∑
µ=λ

µ∑
ξ=1

1

bi−ξ
γ̃2i,µ,ξSi−ξ,lW

(t)
i−ξ,l (λ < i),

0 (λ ≥ i)

Note that the set {∆̃(t)
i,λ} (1 ≤ i ≤ N, 1 ≤ λ ≤ N) can be

used as quantities ϕ̃i,λ in Eq. (48) for each t (0 ≤ t ≤M).

Therefore, note that the set {∆̃(t)
i,ξ} (2 ≤ i ≤ N, 1 ≤ ξ ≤

i− 1) can be used as quantities φ̃i,ξ in Eq. (47) for each t
(0 ≤ t ≤M). Moreover, since W (0) = I, it holds

∆̃
(0)
i,λ = 0 (1 ≤ i ≤ N, 1 ≤ λ ≤ N). (60)

The following lemma holds.

Lemma 4.2.1. For 2 ≤ i ≤ N , 1 ≤ λ ≤ i − 1 and 1 ≤
α ≤M , it holds

N∑
l=i

i−1∑
µ=λ

Si−µ,lX
(α−1)
i−µ,l = χ̃i,λv

(α)
i + ∆̃

(α−1)
i,λ .

Proof of this lemma is similar to that of Lemma 4.1.1.

Similarly to the derivation of Eq. (55), for 2 ≤ i ≤ N
and 1 ≤ u ≤M − 1, we have

i−1∑
k=1

(v
(u)
k − w(u)

k ) = χ̃i,1v
(u)
i + ∆̃

(u−1)
i,1 (61)

= H̃
(0)
i,1 (χ̃)v

(u)
i + ∆̃

(u−1)
i,1 .
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From Eqs. (59) and (61), for 2 ≤ i ≤ N and 1 ≤ u ≤M−1,
we obtain

z
(u)
i − v(u)i = 2(H̃

(0)
i,1 (χ̃)v

(u)
i + ∆̃

(u−1)
i,1 ) + v

(u)
i .

Therefore, from Eq. (11), for 2 ≤ s ≤M and 2 ≤ i ≤ N , it
holds

w
(s)
i =F̃iw

(s)
i−1 + B̌iv

(s−1)
i (62)

+ 2B̌i(H̃
(0)
i,1 (χ̃)v

(s−1)
i + ∆̃

(s−2)
i,1 ).

For s = 2 and 2 ≤ i ≤ N , we obtain Eq. (58) by substi-
tuting s = 2 into Eq. (62) and applying Eq. (60).
Before considering the cases of M ≥ 3, we prepare the

following two lemmas.

Lemma 4.2.2. For 1 ≤ i ≤ N , 1 ≤ λ ≤ N and 1 ≤ α ≤
M , it holds

∆̃
(α)
i,λ = h̃i,λ(χ̃)v

(α)
i + h̃i,λ(∆̃

(α−1)).

Lemma 4.2.3. For 1 ≤ i ≤ N , 1 ≤ λ ≤ N , r = 0, 1, 2, . . .
and 1 ≤ α ≤M , it holds

H̃
(r)
i,λ (∆̃

(α)) = H̃
(r+1)
i,λ (χ̃)v

(α)
i + H̃

(r+1)
i,λ (∆̃(α−1)).

Proof of these lemmas is similar to that of Lemmas 4.1.2
and 4.1.3.
Let us consider cases where M ≥ 3. Similarly to Section

4.1, it holds

∆̃
(s−2)
i,1 =

s−1∑
k=2

H̃
(k−1)
i,1 (χ̃)v

(s−k)
i

for 3 ≤ s ≤M and 2 ≤ i ≤ N . Substituting this result into
Eq. (62), we have Eq. (58) for 3 ≤ s ≤M and 2 ≤ i ≤ N .
Finally, we have shown that Eq. (58) holds for M ≥ 2,

2 ≤ s ≤M and 2 ≤ i ≤ N .

5. Proof of the new recurrence
relations—Step 2

In this section, we show that B̌iH
(r−1)
i,1 (χ) and B̌iH̃

(r−1)
i,1 (χ̃)

are equal to g
(r)
i and g̃

(r)
i for 1 ≤ i ≤ N and r = 1, 2, . . . ,

respectively. If this assertion is verified, then the new re-
currence relations in Section 2.2 are finally proved by com-
bining the proof of these correspondences in this section
with the argument in Section 4.
For convenience, let Či (1 ≤ i ≤ N−1) denote Či = 1/c2i .

5.1. Proof—Part I

In this subsection, we show that B̌iH
(r−1)
i,1 (χ) correspond

to g
(r)
i for 1 ≤ i ≤ N and r = 1, 2, . . . .

We have the following three lemmas.

Lemma 5.1.1. For r = 1, 2, . . . , it holds B̌NH
(r−1)
N,1 (χ) =

g
(r)
N .

Lemma 5.1.2. For 1 ≤ i ≤ N − 1, it holds B̌iH
(0)
i,1 (χ) =

g
(1)
i .

Lemma 5.1.3. For r = 1, 2, . . . , it holds

B̌N−1H
(r−1)
N−1,1(χ) = g

(r)
N−1.

Proof of these lemmas is given in Appendix.

For N = 2, the correspondences between B̌iH
(r−1)
i,1 (χ)

and g
(r)
i for 1 ≤ i ≤ N and r = 1, 2, . . . are shown from

Lemmas 5.1.1 and 5.1.3.

Let us consider the cases where N ≥ 3. The following
lemma holds.

Lemma 5.1.4. Let N be N ≥ 3. Let us consider sets of
quantities {φi,ξ} and {ψi,ξ} defined for 1 ≤ i ≤ N − 1 and
1 ≤ ξ ≤ N − i. Assume that {φi,ξ} and {ψi,ξ} satisfy

φi+1,ξ−1 = ψi,ξ (1 ≤ i ≤ N − 2, 2 ≤ ξ ≤ N − i).

Then, for 1 ≤ i ≤ N − 2 and 2 ≤ λ ≤ N − i, it holds

hi+1,λ−1(φ) = hi,λ(ψ)− Čiψi,1χi,λ,

hi+1,1(φ) = hi,1(ψ)− Čiψi,1χi,1.

Proof. Let i and λ be integers such that 1 ≤ i ≤ N −2 and
2 ≤ λ ≤ N − i, respectively.
With help of Lemma 3.1.4, we see that

N−i∑
µ=λ

µ∑
ξ=2

B̌i+ξγ
2
i,µ,ξψi,ξ

=
N−i∑
µ=λ

 µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξψi,ξ − B̌i+1γ

2
i,µ,1ψi,1


=

N−i∑
µ=λ

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξψi,ξ − B̌i+1ψi,1

N−i∑
µ=λ

γ2i,µ,1

= hi,λ(ψ)− B̌i+1ψi,1 · F̃−1
i+1χi,λ

= hi,λ(ψ)− Čiψi,1χi,λ.

Considering this result and Lemma 3.1.2, we have

hi+1,λ−1(φ)

=
N−i−1∑
µ=λ−1

µ∑
ξ=1

B̌i+1+ξγ
2
i+1,µ,ξφi+1,ξ

=
N−i−1∑
µ=λ−1

µ+1∑
ξ′=2

B̌i+ξ′γ
2
i+1,µ,ξ′−1φi+1,ξ′−1

=
N−i∑
µ′=λ

µ′∑
ξ′=2

B̌i+ξ′γ
2
i+1,µ′−1,ξ′−1φi+1,ξ′−1

=
N−i∑
µ′=λ

µ′∑
ξ′=2

B̌i+ξ′γ
2
i,µ′,ξ′ψi,ξ′

= hi,λ(ψ)− Čiψi,1χi,λ.
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From this result, we have

hi+1,1(φ)

= hi,2(ψ)− Čiψi,1χi,2

=
N−i∑
µ=2

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξψi,ξ − Čiψi,1 · F̃i+1χi+1,1

=
N−i∑
µ=1

µ∑
ξ=1

B̌i+ξγ
2
i,µ,ξψi,ξ − B̌i+1γ

2
i,1,1ψi,1

− B̌i+1ψi,1 · c2i+1v
(1)
i+2

= hi,1(ψ)− (B̌i+1 + Fi+1v
(1)
i+2)ψi,1

= hi,1(ψ)− v(1)i+1ψi,1

= hi,1(ψ)− Čiψi,1χi,1

with consideration of Remark 2.2.4 and Lemmas 3.1.3 and
3.1.5.

For convenience, we introduce new quantities. The new

quantities K
(r)
i,λ defined for N ≥ 2, 1 ≤ i ≤ N − 1, 1 ≤ λ ≤

N and r = 1, 2, . . . are given as follows:

K
(r)
i,λ ≡F̃

−1
i+1H

(r)
i,λ (χ)− ČiH

(r−1)
i,λ (χ) (63)

− Či

r∑
k=1

H
(k−1)
i+1,1 (χ)H

(r−k)
i,λ (χ).

We show the following three lemmas.

Lemma 5.1.5. Only in this lemma, let N be N ≥ 2. For
1 ≤ i ≤ N − 1, 1 ≤ λ ≤ N and r = 1, 2, . . . , it holds

hi,λ(K
(r)) = K

(r+1)
i,λ + ČiH

(r)
i+1,1(χ)H

(0)
i,λ (χ).

Proof of this lemma is given in Appendix.

Lemma 5.1.6. Let N be N ≥ 3. For 1 ≤ i ≤ N − 2,
2 ≤ λ ≤ N − i and r = 1, 2, . . . , it holds{

H
(r)
i+1,λ−1(χ) = K

(r)
i,λ ,

H
(r)
i+1,1(χ) = K

(r)
i,1 .

(64)

Proof. Firstly, note that we have

F̃−1
i+1H

(0)
i,1 (χ) = F̃−1

i+1 · c
2
i v

(1)
i+1 = b2i+1(Fi+1v

(1)
i+2 + B̌i+1)

= c2i+1v
(1)
i+2 + 1 = H

(0)
i+1,1(χ) + 1

with help of Remark 2.2.4 and Lemma 3.1.3. Secondly,
note that

H
(0)
i+1,ξ−1(χ) = χi+1,ξ−1 = F̃−1

i+1χi,ξ = F̃−1
i+1H

(0)
i,ξ (χ)

holds for N ≥ 3, 1 ≤ i ≤ N − 2 and 2 ≤ ξ ≤ N − 1 from
Lemma 3.1.5. Considering these results and Lemma 5.1.4,
we obtain

H
(1)
i+1,λ−1(χ)

= hi+1,λ−1(H
(0)(χ))

= hi,λ(F̃
−1
i+1H

(0)(χ))− Či · F̃−1
i+1H

(0)
i,1 (χ) · χi,λ

= F̃−1
i+1H

(1)
i,λ (χ)− ČiH

(0)
i,λ (χ)− ČiH

(0)
i+1,1(χ)H

(0)
i,λ (χ)

= K
(1)
i,λ

and

H
(1)
i+1,1(χ)

= hi+1,1(H
(0)(χ))

= hi,1(F̃
−1
i+1H

(0)(χ))− Či · F̃−1
i+1H

(0)
i,1 (χ) · χi,1

= F̃−1
i+1H

(1)
i,1 (χ)− ČiH

(0)
i,1 (χ)− ČiH

(0)
i+1,1(χ)H

(0)
i,1 (χ)

= K
(1)
i,1 .

Assume that it holds{
H

(l)
i+1,λ−1(χ) = K

(l)
i,λ,

H
(l)
i+1,1(χ) = K

(l)
i,1

for all l such that 1 ≤ l ≤ s. Then, we have

H
(s+1)
i+1,λ−1(χ)

= hi+1,λ−1(H
(s)(χ))

= hi,λ(K
(s))− ČiK

(s)
i,1 χi,λ

= K
(s+1)
i,λ + ČiH

(s)
i+1,1(χ)H

(0)
i,λ (χ)− ČiH

(s)
i+1,1(χ)H

(0)
i,λ (χ)

= K
(s+1)
i,λ

and

H
(s+1)
i+1,1 (χ)

= hi+1,1(H
(s)(χ))

= hi,1(K
(s))− ČiK

(s)
i,1 χi,1

= K
(s+1)
i,1 + ČiH

(s)
i+1,1(χ)H

(0)
i,1 (χ)− ČiH

(s)
i+1,1(χ)H

(0)
i,1 (χ)

= K
(s+1)
i,1

with consideration of Lemmas 5.1.4 and 5.1.5. Therefore,
it is shown that Eq. (64) holds for 1 ≤ i ≤ N − 2, 2 ≤ λ ≤
N − i, and r = 1, 2, · · · by mathematical induction.

Lemma 5.1.7. Let N be N ≥ 3. For 1 ≤ i ≤ N − 2 and
s = 2, 3, . . . , it holds B̌iH

(s−1)
i,1 (χ) = g

(s)
i .

Proof. For r = 1, 2, . . . , from Lemma 5.1.6 and the defini-
tion (63), it holds

H
(r)
i+1,1(χ) =F̃

−1
i+1H

(r)
i,1 (χ)− ČiH

(r−1)
i,1 (χ)

− Či

r∑
k=1

H
(k−1)
i+1,1 (χ)H

(r−k)
i,1 (χ).

Multiplying the both hand sides by B̌iF̃i+1(= B̌i+1Fi) and
rearranging, we have

B̌iH
(r)
i,1 (χ) =Fi · B̌i+1H

(r)
i+1,1(χ) + B̌i+1 · B̌iH

(r−1)
i,1 (χ)

+

r∑
k=1

B̌i+1H
(k−1)
i+1,1 (χ) · B̌iH

(r−k)
i,1 (χ).

From this result, Definition 2.2.2 and Lemmas 5.1.2 and

5.1.3, B̌iH
(s−1)
i,1 (χ) = g

(s)
i holds for 1 ≤ i ≤ N − 2 and

s = 2, 3, . . . .
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From Lemmas 5.1.1, 5.1.2, 5.1.3 and 5.1.7, the corre-
spondence

B̌iH
(r−1)
i,1 (χ) = g

(r)
i (1 ≤ i ≤ N, r = 1, 2, . . . )

is shown.

5.2. Proof—Part II

In this subsection, we show that B̌iH̃
(r−1)
i,1 (χ̃) correspond

to g̃
(r)
i for 1 ≤ i ≤ N and r = 1, 2, . . . .

We have the following three lemmas.

Lemma 5.2.1. For r = 1, 2, . . . , it holds B̌1H̃
(r−1)
1,1 (χ̃) =

g̃
(r)
1 .

Lemma 5.2.2. For 2 ≤ i ≤ N , it holds B̌iH̃
(0)
i,1 (χ̃) = g̃

(1)
i .

Lemma 5.2.3. For r = 1, 2, . . . , it holds B̌2H̃
(r−1)
2,1 (χ̃) =

g̃
(r)
2 .

Proof of these lemmas is similar to that of Lemmas from
5.1.1 to 5.1.3. We omit them.
For N = 2, the correspondences between B̌iH̃

(r−1)
i,1 (χ̃)

and g̃
(r)
i for 1 ≤ i ≤ N and r = 1, 2, . . . are shown from

Lemmas 5.2.1 and 5.2.3.
Let us consider the cases where N ≥ 3. The following

lemma holds.

Lemma 5.2.4. Let N be N ≥ 3. Let us consider sets of
quantities {φ̃i,ξ} and {ψ̃i,ξ} defined for 2 ≤ i ≤ N and

1 ≤ ξ ≤ i− 1. Assume that {φ̃i,ξ} and {ψ̃i,ξ} satisfy

φ̃i−1,ξ−1 = ψ̃i,ξ (3 ≤ i ≤ N, 2 ≤ ξ ≤ i− 1).

Then, for 3 ≤ i ≤ N and 2 ≤ λ ≤ i− 1, it holds

h̃i−1,λ−1(φ̃) = h̃i,λ(ψ̃)− Či−1ψ̃i,1χ̃i,λ,

h̃i−1,1(φ̃) = h̃i,1(ψ̃)− Či−1ψ̃i,1χ̃i,1.

Proof of this lemma is similar to that of Lemma 5.1.4.
For convenience, we introduce new quantities. The new

quantities K̃
(r)
i,λ defined for N ≥ 2, 2 ≤ i ≤ N , 1 ≤ λ ≤ N

and r = 1, 2, . . . are given as follows:

K̃
(r)
i,λ ≡F

−1
i−1H̃

(r)
i,λ (χ̃)− Či−1H̃

(r−1)
i,λ (χ̃)

− Či−1

r∑
k=1

H̃
(k−1)
i−1,1 (χ̃)H̃

(r−k)
i,λ (χ̃).

Similarly to Section 5.1, we have the following three lem-
mas.

Lemma 5.2.5. Only in this lemma, let N be N ≥ 2. For
2 ≤ i ≤ N , 1 ≤ λ ≤ N and r = 1, 2, . . . , it holds

h̃i,λ(K̃
(r)) = K̃

(r+1)
i,λ + Či−1H̃

(r)
i−1,1(χ̃)H̃

(0)
i,λ (χ̃).

Lemma 5.2.6. Let N be N ≥ 3. For 3 ≤ i ≤ N , 2 ≤ λ ≤
i− 1 and r = 1, 2, . . . , it holds{

H̃
(r)
i−1,λ−1(χ̃) = K̃

(r)
i,λ ,

H̃
(r)
i−1,1(χ̃) = K̃

(r)
i,1 .

Lemma 5.2.7. Let N be N ≥ 3. For 3 ≤ i ≤ N and
s = 2, 3, . . . , it holds B̌iH̃

(s−1)
i,1 (χ̃) = g̃

(s)
i .

Proof of these lemmas is similar to that of Lemmas from
5.1.5 to 5.1.7.
From Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.7, the corre-

spondence

B̌iH̃
(r−1)
i,1 (χ̃) = g̃

(r)
i (1 ≤ i ≤ N, r = 1, 2, . . . )

is shown.
Thus, derivation of the new recurrence relations in Sec-

tion 2.2 is completed.

6. Computational cost for computing
the trace JM(B)

In this section, computational cost of the trace JM (B) for
a fixed M is considered. In Section 6.1, the computational
cost with the old recurrence relations [4] in Theorem 2.1.1
is discussed. In Section 6.2, the computational cost with
the new recurrence relations in Section 2.2 is discussed.
In Section 6.3, a reduction of the number of operations
of the recurrence relations in Section 2.2 is discussed. In
Section 6.4, implementations of algorithms for computing
the traces JM (B) (M = 2, 3) are performed. The numbers
of operations of these implementations are also discussed.

6.1. Computational cost with the old recur-
rence relations

In this subsection, computational cost for the trace JM (B)
for a fixedM with the recurrence relations in Theorem 2.1.1
is estimated. The following corollary of Theorem 2.1.1
holds.

Corollary 6.1.1. Let M be a fixed positive integer. The
trace JM (B) can be obtained O(MN) operations through
the old recurrence relations in Theorem 2.1.1.

Proof. We estimate computational cost for computing all
the diagonals of ((BBT )M )−1. Let us consider the case

where all the quantities v
(q)
i , w

(q)
i and z

(q)
i for all i (1 ≤ i ≤

N) and q (0 ≤ q ≤M−1) are obtained before obtaining the

diagonals w
(M)
i for 1 ≤ i ≤ N . These quantities are suffi-

cient to determine all the diagonals w
(M)
i for 1 ≤ i ≤ N .

As is shown in [4], v
(0)
i , w

(0)
i and z

(0)
i for 1 ≤ i ≤ N are

given as v
(0)
i = 1, w

(0)
i = 1 and z

(0)
i = 2, respectively.

Then, the number of remaining quantities to be obtained
is (3M − 2)N . They are not given directly. Each of these
quantities can be obtained within at most six times of the
four basic operations of arithmetic according to the recur-
rence relations in Theorem 2.1.1. Then, all the diagonals
of ((BBT )M )−1 are obtained less than 18MN operations.
The trace JM (B) is computed with N − 1 times addition
after all the diagonals of ((BBT )M )−1 are computed.

Note that the generalized Newton bound θM (B) and
the generalized Newton shift (θM (B))2 can be obtained



66 Journal of Math-for-Industry, Vol. 4 (2012A-8)

by once division from (JM (B))
1

2M and (JM (B))
1
M , respec-

tively.

Remark 6.1.2. For some integerm (≥ 2) and positive real
number ζ, assume that computational cost for computing
ζ

1
m from ζ is negligible. Then, the computational costs for

the generalized Newton bound θM (B) and the generalized
Newton shift (θM (B))2 with the old recurrence relations in
Theorem 2.2.1 are both O(MN).

6.2. Computational cost with the new recur-
rence relations

In this subsection, computational cost for the trace JM (B)
with the new recurrence relations is discussed. Note that
computational cost should be considered for sufficiently
large M and N .

In the case of M = 1, the trace J1(B) can be computed
with the recurrence relations in Remark 2.2.4. An algo-
rithm for computing J1(B) by these recurrence relations
is shown in Algorithm 1. In the case of M ≥ 2, an algo-
rithm for computing diagonals of the inverse (BBT )−1 is
shown in Algorithm 2. In the case of M ≥ 3, algorithms

for computing diagonals of the inverse (BTB)−1 and g̃
(r)
i

(1 ≤ i ≤ N, 2 ≤ r ≤ M − 1) are shown in Algorithms 3
and 4, respectively. In the case of M ≥ 4, an algorithm for

computing g
(r)
i (1 ≤ i ≤ N, 2 ≤ r ≤ M − 2) is shown in

Algorithm 5. Moreover, in the case of M ≥ 2, Algorithm
6 is utilized. Algorithms for computing the traces J2(B),
J3(B) and JM (B) (M ≥ 4) are shown in Algorithms 7,
8 and 9, respectively. Note that Algorithms 3, 4 and 6
are called after Algorithm 2 is called. Moreover, note that
Algorithm 5 is called after Algorithm 3 is called.

From Algorithm 9, the following Remark 6.2.1 follows.

Remark 6.2.1. The computational cost for the trace
JM (B) with the new recurrence relations is O(M2N).

Remark 6.2.2. Under the same assumption in Remark
6.1.2, the computational costs for the generalized Newton
bound θM (B) and the generalized Newton shift (θM (B))2

with the new recurrence relations in Section 2.2 are both
O(M2N).

Algorithm 1 computation of the trace J1(B)

1: B̌1 ← 1.0/(b1 ∗ b1)
2: w

(1)
1 ← B̌1

3: J ← w
(1)
1

4: for i = 2 to N by +1 do
5: B̌i ← 1.0/(bi ∗ bi)
6: F̃i ← ci−1 ∗ ci−1 ∗ B̌i

7: w
(1)
i ← F̃i ∗ w(1)

i−1 + B̌i

8: J ← J + w
(1)
i

9: end for
10: return J

Algorithm 2 computation of diagonals of (BBT )−1

1: B̌1 ← 1.0/(b1 ∗ b1)
2: w

(1)
1 ← B̌1

3: for i = 2 to N by +1 do
4: B̌i ← 1.0/(bi ∗ bi)
5: Ĉi−1 ← ci−1 ∗ ci−1

6: F̃i ← Ĉi−1 ∗ B̌i

7: g̃
(1)
i ← F̃i ∗ w(1)

i−1

8: w
(1)
i ← g̃

(1)
i + B̌i

9: end for

Algorithm 3 computation of diagonals of (BTB)−1

1: v
(1)
N ← B̌N

2: for i = N − 1 to 1 by −1 do
3: Fi ← Ĉi ∗ B̌i

4: g
(1)
i ← Fi ∗ v(1)i+1

5: v
(1)
i ← g

(1)
i + B̌i

6: end for

Algorithm 4 computation of g̃
(r)
i (1 ≤ i ≤ N, 2 ≤ r ≤

M − 1) in the case of M ≥ 3

1: g̃
(1)
1 ← 0

2: for r = 2 to M − 1 by +1 do

3: g̃
(r)
1 ← 0

4: for i = 2 to N by +1 do
5: tmp← 0
6: for k = 1 to r − 1 by +1 do

7: tmp← tmp+ g̃
(k)
i−1 ∗ g̃

(r−k)
i

8: end for
9: g̃

(r)
i ← F̃i ∗ g̃(r)i−1 + B̌i−1 ∗ g̃(r−1)

i + tmp
10: end for
11: end for

Algorithm 5 computation of g
(r)
i (1 ≤ i ≤ N, 2 ≤ r ≤

M − 2) in the case of M ≥ 4

1: g
(1)
N ← 0

2: for r = 2 to M − 2 by +1 do

3: g
(r)
N ← 0

4: for i = N − 1 to 1 by −1 do
5: tmp← 0
6: for k = 1 to r − 1 by +1 do

7: tmp← tmp+ g
(k)
i+1 ∗ g

(r−k)
i

8: end for
9: g

(r)
i ← Fi ∗ g(r)i+1 + B̌i+1 ∗ g(r−1)

i + tmp
10: end for
11: end for
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Algorithm 6 common part for computation of the trace
JM (B) with the new recurrence relations in the case of
M ≥ 2

1: for s = 2 to M by +1 do
2: if s < M then
3: v

(s)
N ← B̌N ∗ w(s−1)

N

4: for i = N − 1 to 1 by −1 do
5: tmp← 0
6: for k = 1 to s− 1 by +1 do

7: tmp← tmp+ g
(k)
i ∗ w(s−k)

i

8: end for
9: v

(s)
i ← Fi ∗ v(s)i+1 + B̌i ∗ w(s−1)

i + 2 ∗ tmp
10: end for
11: end if
12: if s ̸=M − 1 then

13: w
(s)
1 ← B̌1 ∗ v(s−1)

1

14: if s =M then
15: J ← w

(s)
1

16: end if
17: for i = 2 to N by +1 do
18: tmp← 0
19: for k = 1 to s− 1 by +1 do

20: tmp← tmp+ g̃
(k)
i ∗ v(s−k)

i

21: end for
22: w

(s)
i ← F̃i ∗ w(s)

i−1 + B̌i ∗ v(s−1)
i + 2 ∗ tmp

23: if s =M then
24: J ← J + w

(s)
i

25: end if
26: end for
27: end if
28: end for

Algorithm 7 computation of the trace J2(B) with the new
recurrence relations
1: call Algorithm 2

2: v
(1)
N ← B̌N

3: for i = N − 1 to 1 by −1 do
4: Fi ← Ĉi ∗ B̌i

5: v
(1)
i ← Fi ∗ v(1)i+1 + B̌i

6: end for
7: call Algorithm 6
8: return J

Algorithm 8 computation of the trace J3(B) with the new
recurrence relations
1: call Algorithm 2
2: call Algorithm 3
3: call Algorithm 4
4: call Algorithm 6
5: return J

Algorithm 9 computation of the trace JM (B) with the
new recurrence relations in the case of M ≥ 4

1: call Algorithm 2
2: call Algorithm 3
3: call Algorithm 4
4: call Algorithm 5
5: call Algorithm 6
6: return J

6.3. A reduction of the number of operations

The recurrence relations for computing g
(2)
i (1 ≤ i ≤ N−1)

in Definition 2.2.2 can be rearranged as follows.

g
(2)
i = Fig

(2)
i+1 + B̌i+1g

(1)
i + g

(1)
i+1g

(1)
i

= Fig
(2)
i+1 + (B̌i+1 + g

(1)
i+1)g

(1)
i

= Fig
(2)
i+1 + v

(1)
i+1g

(1)
i (1 ≤ i ≤ N − 1).

Similarly, the recurrence relations for computing g̃
(2)
i (2 ≤

i ≤ N) in Definition 2.2.3 can be rearranged as follows.

g̃
(2)
i = F̃ig̃

(2)
i−1 + w

(1)
i−1g̃

(1)
i (2 ≤ i ≤ N).

By these rearrangements, the number of multiplication and
addition are reduced from three times to twice and from
twice to once, respectively. Moreover, for r = 3, 4, . . . ,
the recurrence relations (23) in Definition 2.2.2 and (24) in
Definition 2.2.3 can be rewritten as follows,

g
(r)
i = Fig

(r)
i+1 + v

(1)
i+1g

(r−1)
i +

r−1∑
k=2

g
(k)
i+1g

(r−k)
i

(1 ≤ i ≤ N − 1),

g̃
(r)
i = F̃ig̃

(r)
i−1 + w

(1)
i−1g̃

(r−1)
i +

r−1∑
k=2

g̃
(k)
i−1g̃

(r−k)
i

(2 ≤ i ≤ N).

These modified recurrence relations require less number
of multiplication and addition by once compared with the
original recurrence relation (23) or (24).
Let us consider the following relationships.

B̌i + 2g
(1)
i = v

(1)
i + g

(1)
i (1 ≤ i ≤ N − 1),

B̌i + 2g̃
(1)
i = w

(1)
i + g̃

(1)
i (2 ≤ i ≤ N).

See Remark 2.2.4. For M ≥ 2, the modified recurrence

relations for computing v
(2)
i (1 ≤ i ≤ N − 1) and w

(2)
i

(2 ≤ i ≤ N) in Theorem 2.2.5 can be written as follows,

v
(2)
i = Fiv

(2)
i+1 + B̌iw

(1)
i + 2g

(1)
i w

(1)
i

= Fiv
(2)
i+1 + (v

(1)
i + g

(1)
i )w

(1)
i (1 ≤ i ≤ N − 1),

w
(2)
i = F̃iw

(2)
i−1 + B̌iv

(1)
i + 2g̃

(1)
i v

(1)
i

= F̃iw
(2)
i−1 + (w

(1)
i + g̃

(1)
i )v

(1)
i (2 ≤ i ≤ N).

By these rearrangements, the number of multiplication is
reduced from four times to twice. For M ≥ 3 and 3 ≤ s ≤
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M , modified relations for computing v
(s)
i (1 ≤ i ≤ N − 1)

and w
(s)
i (2 ≤ i ≤ N) in Theorem 2.2.5 can be written as

follows,

v
(s)
i = Fiv

(s)
i+1 + (v

(1)
i + g

(1)
i )w

(s−1)
i + 2

s−1∑
k=2

g
(k)
i w

(s−k)
i

(1 ≤ i ≤ N − 1),

w
(s)
i = F̃iw

(s)
i−1 + (w

(1)
i + g̃

(1)
i )v

(s−1)
i + 2

s−1∑
k=2

g̃
(k)
i v

(s−k)
i

(2 ≤ i ≤ N).

By these rearrangements, the number of multiplication is
reduced form s+ 2 to s+ 1.
On the other hand, on the old recurrence relations, we

have not found such rearrangement.

6.4. Efficient implementations of algorithms
for the cases of M = 2 and 3

In this subsection, we consider cases of M = 2 and 3. On
the new recurrence relations in Section 2.2, to reduce the
number of operations, we consider modified new recurrence
relations in Section 6.3. As well as the new recurrence re-
lations in Section 2.2, these modified new recurrence re-
lations are subtraction-free. We perform implementations
of algorithms for computing the traces JM (B). For each
M , one implementation is based on the old recurrence re-
lations in Section 2.1 and another implementation is based
on the modified new recurrence relations. The numbers of
operations of these implementations are compared.
For i = 1, . . . , N , let bi be recorded in “array” B[i]. For

i = 1, . . . , N − 1, let ci be recorded in “array” C[i]. In this
discussion, we consider the case where these “arrays” are
not destroyed by “overwriting”. Moreover, we consider the
following devises for numerical computation in information
processing.

• We try to reduce the number of “loops” by the tech-
nique of “loop fusion”.

• We try to raise “register hit rate” or “cash hit rate”
by trial to reduce “working memories”. We avoid use
of an “array” if it is not necessary.

• We try to raise “cash hit rate” by trial to use the same
“variable” or an “element” in an “array” continuously.

• We try to reduce the number of divisions which takes
a longer time than multiplications.

Algorithms for computing the trace J2(B) based on the
old and the modified new recurrence relations are shown
in Algorithms 10 and 11, respectively. The numbers of op-
erations are shown in Table 1. Algorithms for computing
the trace J3(B) based on the old and the modified new
recurrence relations are shown in Algorithms 12 and 13,
respectively. The numbers of operations are shown in Ta-
ble 2. Among these implementations, the traces J2(B) and

J3(B) are computed by the implementations based on the
modified new recurrence relations in less number of opera-
tions than by those based on the old recurrence relations.
We see Algorithms 11 and 13 are better than Algorithms
10 and 12, respectively.

Table 1: Comparison of the number of operations in com-
putation of J2(B)

Algo. 10 (old) Algo. 11 (new)
addition 5N − 5 5N − 5
subtraction 2N − 2 0
multiplication 9N − 6 8N − 6
division N N

Table 2: Comparison of the number of operations in com-
putation of J3(B)

Algo. 12 (old) Algo. 13 (new)
addition 8N − 8 9N − 8
subtraction 5N − 4 0
multiplication 14N − 8 14N − 8
division N N

Algorithm 10 An implementation of an algorithm for
computing the trace J2(B) with a method based on the
old recurrence relations

1: IB[N ]← 1.0/(B[N ] ∗ B[N ]) : B̌N

2: D[N ]← IB[N ] : v
(1)
N

3: for i = N − 1 to 1 by −1 do
4: SC[i]← C[i] ∗ C[i] : c2i
5: IB[i]← 1.0/(B[i] ∗ B[i]) : B̌i

6: D[i]← IB[i] ∗ (SC[i] ∗D[i+ 1] + 1.0) : v
(1)
i

7: end for
8: W2← IB[1] ∗D[1] : w

(2)
1

9: W1← IB[1] : w
(1)
1

10: Z1← 2.0 ∗D[1] : z
(1)
1

11: J←W2
12: for i = 2 to N by +1 do

13: Z1← Z1 + 2.0 ∗ (D[i]−W1) : z
(1)
i

14: W2← IB[i] ∗ (SC[i− 1] ∗W2+ Z1−D[i]) : w
(2)
i

15: W1← IB[i] ∗ (SC[i− 1] ∗W1+ 1.0) : w
(1)
i

16: J← J +W2
17: end for
18: return J

7. Concluding remarks

In this paper, new recurrence relations for computing diag-
onals of ((BTB)M )−1 and ((BBT )M )−1 are derived start-
ing from the old ones in [4]. From these diagonals, the
trace JM (B) can be obtained. Moreover, the generalized
Newton bound θM (B) of order M , which is a lower bound
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Algorithm 11 An implementation of an algorithm for
computing the trace J2(B) with a method based on the
new recurrence relations

1: IB[N ]← 1.0/(B[N ] ∗ B[N ]) : B̌N

2: D[N ]← IB[N ] : v
(1)
N

3: for i = N − 1 to 1 by −1 do
4: SC[i]← C[i] ∗ C[i] : c2i
5: IB[i]← 1.0/(B[i] ∗ B[i]) : B̌i

6: D[i]← IB[i] ∗ (SC[i] ∗D[i+ 1] + 1.0) : v
(1)
i

7: end for
8: W1← IB[1] : w

(1)
1

9: W2←W1 ∗D[1] : w
(2)
1

10: J←W2
11: for i = 2 to N by +1 do
12: FW← SC[i− 1] ∗ IB[i] : F̃i

13: H1← FW ∗W1 : g̃
(1)
i

14: W1← H1 + IB[i] : w
(1)
i

15: W2← FW ∗W2+ (W1 + H1) ∗D[i] : w
(2)
i

16: J← J +W2
17: end for
18: return J

Algorithm 12 An implementation of an algorithm for
computing the trace J3(B) with a method based on the
old recurrence relations

1: IB[1]← 1.0/(B[1] ∗ B[1]) : B̌1

2: D[1]← IB[1] : w
(1)
1

3: for i = 2 to N by +1 do
4: SC[i− 1]← C[i− 1] ∗ C[i− 1] : c2i−1

5: IB[i]← 1.0/(B[i] ∗ B[i]) : B̌i

6: D[i]← IB[i] ∗ (SC[i− 1] ∗D[i− 1] + 1.0) : w
(1)
i

7: end for
8: Z← 2.0 ∗D[N ] : z

(1)
N

9: D[N ]← IB[N ] ∗D[N ] : v
(2)
N

10: R← IB[N ] : v
(1)
N

11: A[N ]← Z− R
12: for i = N − 1 to 1 by −1 do

13: Z← Z + 2.0 ∗ (D[i]− R) : z
(1)
i

14: D[i]← IB[i] ∗ (SC[i] ∗D[i+ 1] + Z−D[i]) : v
(2)
i

15: R← IB[i] ∗ (SC[i] ∗ R+ 1.0) : v
(1)
i

16: A[i]← Z− R
17: end for
18: W← IB[1] ∗D[1] : w

(3)
1

19: R← IB[1] ∗ R : w
(2)
1

20: Z← 2.0 ∗D[1] : z
(2)
1

21: J←W
22: for i = 2 to N by +1 do

23: Z← Z + 2.0 ∗ (D[i]− R) : z
(2)
i

24: W← IB[i] ∗ (SC[i− 1] ∗W+Z−D[i]) : w
(3)
i

25: R← IB[i] ∗ (SC[i− 1] ∗ R+A[i]) : w
(2)
i

26: J← J +W
27: end for
28: return J

Algorithm 13 An implementation of an algorithm for
computing the trace J3(B) with a method based on the
new recurrence relations

1: H2[1]← 0.0 : g̃
(2)
1

2: IB[1]← 1.0/(B[1] ∗ B[1]) : B̌1

3: A[1]← IB[1] : B̌1 + 2g̃
(1)
1

4: W1[1]← A[1] : w
(1)
1

5: for i = 2 to N by +1 do
6: SC[i− 1]← C[i− 1] ∗ C[i− 1] : c2i−1

7: IB[i]← 1.0/(B[i] ∗ B[i]) : B̌i

8: FW[i]← SC[i− 1] ∗ IB[i] : F̃i

9: A[i]← FW[i] ∗W1[i− 1] : g̃
(1)
i

10: H2[i]← FW[i] ∗H2[i− 1] +W1[i− 1] ∗A[i] : g̃
(2)
i

11: W1[i]← A[i] + IB[i] : w
(1)
i

12: A[i]← A[i] +W1[i] : B̌i + 2g̃
(1)
i

13: end for
14: J← IB[N ] : v

(1)
N

15: K←W1[N ] ∗ J : v
(2)
N

16: A[N ]← A[N ] ∗K+ 2.0 ∗H2[N ] ∗ J
17: for i = N − 1 to 1 by −1 do
18: FV← SC[i] ∗ IB[i] : Fi

19: G1← FV ∗ J : g
(1)
i

20: J← G1 + IB[i] : v
(1)
i

21: K← FV ∗K+ (J + G1) ∗W1[i] : v
(2)
i

22: A[i]← A[i] ∗K+ 2.0 ∗H2[i] ∗ J
23: end for
24: K← IB[1] ∗K : w

(3)
1

25: J← K
26: for i = 2 to N by +1 do

27: K← FW[i] ∗K+A[i] : w
(3)
i

28: J← J + K
29: end for
30: return J
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of the minimal singular value σmin(B) of B, is computed
from the trace JM (B). As is shown in [4], the generalized
Newton bounds increase monotonically with increase ofM ,
namely, θM (B) of larger M gives a better lower bound
of σmin(B). Different from the old recurrence relations
in [4], the new recurrence relations are subtraction-free.
Namely, they consist only addition, multiplication and di-
vision among positive quantities. Therefore, any possibility
of cancellation error is clearly excluded.
Computational cost for the trace JM (B) with the old

and the new recurrence relations are shown to be O(MN)
and O(M2N), respectively. In the cases of M = 2 and 3,
efficient implementations of the algorithms for computing
the traces JM (B) are also performed. Though the order
of computational cost for the trace JM (B) with the new
recurrence relations is higher than that with the old recur-
rence relations, the implementations forM = 2 and 3 based
on the modified new recurrence relations require less num-
ber of operations than those based on the old recurrence
relations.
The square of the generalized Newton bound θM (B) of

order M can be used as a shift of origin in the dqds algo-
rithm and the mdLVs algorithm which are singular value
computation algorithms. Therefore, a shift in terms of
(θM (B))2 is named the generalized Newton shift of order
M . Since θM (B) increases monotonically with increase of
M , the dqds and the mdLVs algorithms with the general-
ized Newton shift of higher order M are expected to con-
verge faster. However, such shift itself needs more compu-
tational cost than that of lower order M . There has to be
a trade-off between convergence speed and computational
cost.
A shift strategy for the mdLVs algorithm, which utilizes

the traces J1(B) and J2(B), is discussed in [8]. Another
shift strategy for the dqds algorithm, which is advanced
from the one in [8] and utilizes the traces J1(B) and J2(B),
will be discussed in [9]. Asymptotic convergence analysis
of the dqds algorithms with the generalized Newton shift
and another approach for computing the traces JM (B) will
be discussed in the subsequent papers.

Appendix

Proof of Lemma 3.1.1. First, we discuss in the case of 1 ≤
i ≤ N , 0 ≤ ρ ≤ µ and i + µ ≤ j ≤ N . When ρ = µ, it
is obvious that Si+µ,j = 1 · Si+µ,j = βi,µ,ρSi+ρ,j . When
ρ < µ, by applying

Si+1,j = −
bi
ci
Si,j (1 ≤ i < j ≤ N)

in Eq. (33) to Si+µ,j once or repeatedly, we have the equa-
tion Si+µ,j = βi,µ,ρSi+ρ,j .
Secondly, we discuss the case of 1 ≤ i ≤ N , 0 ≤ ρ ≤ µ ≤

N − i and 1 ≤ j ≤ i + ρ. When ρ = µ, it is obvious that
Sj,i+µ = 1 ·Sj,i+µ = γi,µ,ρSj,i+ρ. When ρ < µ, by applying

Sj,i+1 = − ci
bi+1

Sj,i (1 ≤ j ≤ i ≤ N − 1)

obtained from Eq. (33) to Sj,i+µ once or repeatedly, we
have the equation Sj,i+µ = γi,µ,ρSj,i+ρ.

Proof of Lemma 3.1.2. When ξ = µ, then it is obvious that
γ2i+1,µ−1,ξ−1 = 1 = γ2i,µ,ξ. When ξ < µ, then we have

γ2i+1,µ−1,ξ−1 =

µ−1∏
ν=ξ

F̃i+ν+1 =

µ∏
ν′=ξ+1

F̃i+ν′ = γ2i,µ,ξ

from Eq. (38).

Proof of Lemma 3.1.3. It holds

H
(0)
i,1 (χ) = χi,1 =

N−i∑
µ=1

γ2i,µ,0

from the definitions (43) and (46).
Eq. (33) and Lemma 3.1.1 lead

c2iS
2
i+1,i+µ = c2i

(
−bi
ci
Si,i+µ

)2

= b2i (γi,µ,0Si,i)
2 = γ2i,µ,0 (1 ≤ µ ≤ N − i).

Therefore, since S is an upper triangle matrix and SST =
V (1), we have

N−i∑
µ=1

γ2i,µ,0 =
N−i∑
µ=1

c2iS
2
i+1,i+µ = c2i

N−i∑
µ=1

Si+1,i+µS
T
i+µ,i+1

= c2i

N∑
ρ=i+1

Si+1,ρS
T
ρ,i+1 = c2i

N∑
ρ=1

Si+1,ρS
T
ρ,i+1

= c2iV
(1)
i+1,i+1 = c2i v

(1)
i+1.

Proof of Lemma 3.1.4. From Eq. (38), it can be readily
verified that

F̃i+1γ
2
i,µ,1 =

µ∏
ν=1

F̃i+ν = γ2i,µ,0

for 1 ≤ i ≤ N − 1 and 1 ≤ µ ≤ N − i. From this relation
and the definition of χi,λ, we have

N−i∑
µ=λ

γ2i,µ,1 = F̃−1
i+1

N−i∑
µ=λ

γ2i,µ,0 = F̃−1
i+1χi,λ

for 1 ≤ i ≤ N − 1 and 1 ≤ λ ≤ N − i.

Proof of Lemma 3.1.5. For N − i+1 ≤ λ ≤ N , it is trivial
that

χi+1,λ−1 = χi,λ = 0

from the definition (46).
For 1 ≤ λ ≤ N − i, we have

χi+1,λ−1 =

N−i−1∑
µ=λ−1

γ2i+1,µ,0 =

N−i−1∑
µ=λ−1

γ2i,µ+1,1

=
N−i∑
µ′=λ

γ2i,µ′,1 = F̃−1
i+1χi,λ

with consideration of Lemmas 3.1.2 and 3.1.4.



Takumi Yamashita, Kinji Kimura and Yoshimasa Nakamura 71

Proof of Lemma 5.1.1. From Eq. (44) and Definition 2.2.2,
it is obvious that

B̌NH
(r−1)
N,1 (χ) = 0 = g

(r)
N (r = 1, 2, . . . ).

Proof of Lemma 5.1.2. For 1 ≤ i ≤ N − 1, considering
Lemma 3.1.3 and Definition 2.2.2, it holds

B̌iH
(0)
i,1 (χ) = B̌i · c2i v

(1)
i+1 = Fiv

(1)
i+1 = g

(1)
i .

Proof of Lemma 5.1.3. From Definition 2.2.2, we see

g
(r)
N−1 = B̌Ng

(r−1)
N−1 (r = 2, 3, . . . ). (65)

For r = 1, 2, . . . , since it holds

H
(r)
N−1,1(χ) = hN−1,1(H

(r−1)(χ))

=

1∑
µ=1

µ∑
ξ=1

B̌N−1+ξγ
2
N−1,µ,ξH

(r−1)
N−1,ξ(χ)

= B̌Nγ
2
N−1,1,1H

(r−1)
N−1,1(χ)

= B̌NH
(r−1)
N−1,1(χ),

we have

B̌N−1H
(r)
N−1,1(χ) = B̌N · B̌N−1H

(r−1)
N−1,1(χ). (66)

It holds B̌N−1H
(r−1)
N−1,1(χ) = g

(r)
N−1 for r = 1, 2, . . . from

Lemma 5.1.2 and Eqs. (65) and (66).

Proof of Lemma 5.1.5. For r = 1, 2, . . . , it holds

hi,λ(K
(r)) = hi,λ

(
F̃−1
i+1H

(r)(χ)− ČiH
(r−1)(χ)

−Či

r∑
k=1

H
(k−1)
i+1,1 (χ)H

(r−k)(χ)

)
= F̃−1

i+1H
(r+1)
i,λ (χ)− ČiH

(r)
i,λ (χ)

− Či

r∑
k=1

H
(k−1)
i+1,1 (χ)H

(r+1−k)
i,λ (χ)

= K
(r+1)
i,λ + ČiH

(r)
i+1,1(χ)H

(0)
i,λ (χ).
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