
Journal of Math-for-Industry, Vol. 3 (2011C-10), pp. 73–79

A案 B案

D案 E案 F案

C案

Image segmentation using CUDA implementations of
the Runge-Kutta-Merson and GMRES methods

Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata and Vı́tězslav Žabka

Revised on October 7, 2011

Abstract. Modern GPUs are well suited for performing image processing tasks. We utilize
their high computational performance and memory bandwidth for image segmentation purposes.
We segment cardiac MRI data by means of numerical solution of an anisotropic partial differential
equation of the Allen-Cahn type. We implement two different algorithms for solving the equation
on the CUDA architecture. One of them is based on the Runge-Kutta-Merson method for the
approximation of solutions of ordinary differential equations, the other uses the GMRES method
for the numerical solution of systems of linear equations. In our experiments, the CUDA imple-
mentations of both algorithms are about 3–9 times faster than corresponding 12-threaded OpenMP
implementations.

Keywords. CUDA, image segmentation, Allen-Cahn equation, Runge-Kutta-Merson, GMRES

1. Introduction

Graphics processing units (GPUs) were initially designed
to accelerate computer graphics rendering. Since then,
they have evolved into general purpose computing devices.
Because of their parallel architecture, high computational
power and memory bandwidth, GPUs are capable of out-
performing CPUs in compute-intensive data-parallel com-
putations. General-purpose computing on graphics pro-
cessing units (GPGPU) has been successfully used in many
applications, such as physical simulations [11, 27], bio-
logical simulations [13, 14] and digital signal processing
[12, 20, 23], where significant speedups have been achieved.

This article describes an application of GPGPU in the
area of the image processing; the GPU is used to per-
form 2D image segmentation. We segment greyscale im-
ages given by the intensity function I0 : ⟨0, L1⟩×⟨0, L2⟩ →
⟨0, 1⟩. The geodesic active contours approach to image seg-
mentation consists of setting an initial curve inside the
object of our interest and evolving it to find the object
boundary [2]. The motion of the segmentation curve can
be expressed by the following formula for its normal veloc-
ity v (see [15]):

v = g0k + ∇g0 · N⃗ , (1)

where k is its curvature, N⃗ is its normal vector and g0 ≡
g
(
|∇Gσ ∗ I0|

)
. The function g is a smooth edge-indicator

function, e.g. g(s) = 1
1+λs2 with the parameter λ > 0. The

term Gσ∗I0 represents convolution of the smoothing kernel
Gσ and the segmented image I0. Due to the shape of the
Perona-Malik function g, the evolution of the segmentation
curve slows down near edges in the image.

Evolving curves can be treated in several ways — by di-
rect approach based methods [7], level-set methods [2, 8]
or phase-field methods [6]. We choose the phase-field ap-
proach originating from physical models of phase transi-
tions [1]. The spatial domain is split into two parts — a
liquid and a solid phase. Between them, there is a narrow
interface. We consider a function u which is, for instance,
zero at the solid part, one at the liquid part, and it con-
tinuously changes from zero to one at the interface. Then,
the interface curve can be detected as the level set u = 1

2 .
In [6], this model has been modified for the purpose of the
image segmentation. The following segmentation equation
has been proposed:

ξ
∂u

∂t
= ξ∇ ·

(
g0∇u

)
+

(
1
ξ
f0(u) + ξF |∇u|

)
g0. (2)

It is a non-linear anisotropic partial differential equation
of the Allen-Cahn type for the function u = u(t, x) which
evolves on a rectangular two-dimensional domain Ω ⊂ R2.
The parameter t ∈ (0, T) represents time, x = [x1, x2] ∈ Ω
is the spatial variable, g0 = g0(x) is the edge-indicator
function, ξ > 0 is a parameter related to the thickness of
the interface layer, f0(u) = u(1 − u)(u − 1

2) is a polyno-
mial derived from the double-well potential w0 (see [5]) as
f0 = −w′

0 and F = F (x) has the meaning of an a priori
information about the expected location and shape of the
segmented object. The segmentation curve shrinks when
F is zero, and this motion accelerates for F negative and
slows or even inverts, i.e. the curve stretches, for F posi-
tive.

The initial-boundary-value problem for the equation (2)

73

74 Journal of Math-for-Industry, Vol. 3 (2011C-10)

reads as follows:

ξ
∂u

∂t
= ξ∇ ·

(
g0∇u

)
+

(
1
ξ
f0(u) + ξF |∇u|

)
g0

in (0, T) × Ω,

u|∂Ω = 0 on (0, T) × ∂Ω,

u|t=0 = uini in Ω.

(3)

The initial condition uini = uini(x) can be given as a char-
acteristic function of a domain covering the objects of in-
terest or a domain inside the object of interest with the
parameter F set appropriately.

1.1. Contribution

We present CUDA implementations of two algorithms to
solve the problem (3) numerically. First, we apply the
method of lines leading to a system of ordinary differen-
tial equations which we solve by the Runge-Kutta-Merson
method. The other algorithm is based on the GMRES
method which is used for the numerical solution of the
system of linear equations obtained from the fully-discrete
semi-implicit scheme for the problem (3).

1.2. Organization

The article is organized as follows. In Section 2, we show
the numerical schemes for our problem and describe the
Runge-Kutta-Merson method. In Section 3, we introduce
the CUDA architecture. In Section 4, we present our im-
plementations of the Runge-Kutta-Merson method and the
GMRES method in the CUDA architecture. In Section 5,
we compare the performance of our CUDA implementa-
tions with corresponding CPU implementations.

2. Numerical solution

Let Ω = (0, L1) × (0, L2) ⊂ R2 be the rectangular do-
main. We introduce the space steps h = [h1, h2], the grid
sizes N1 = L1

h1
, N2 = L2

h2
, the grid of internal nodes ωh =

{[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1}, the grid
of all nodes ω̄h = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2}
and γh = ω̄h r ωh.

We consider the grid function uh : (0, T)×ω̄h → R which
is defined by uh

i,j(t) = u(t, ih1, jh2). We denote backward
and forward differences

uh
x1,i,j =

uh
i+1,j − uh

i,j

h1
, uh

x̄1,i,j =
uh

i,j − uh
i−1,j

h1
, (4)

uh
x2,i,j =

uh
i,j+1 − uh

i,j

h2
, uh

x̄2,i,j =
uh

i,j − uh
i,j−1

h2
, (5)

and approximations of the gradient and the divergence(
∇̄huh

)
i,j

=
[
uh

x̄1,i,j , u
h
x̄2,i,j

]
,
(
∇h · V h

)
i,j

= V 1
x1,i,j +V 2

x2,i,j

for V h =
[
V 1, V 2

]
. Then the semi-discrete scheme for the

problem (3) has the following form:

duh

dt
= ∇h ·

(
g0∇̄huh

)
+

(
1
ξ2

f0

(
uh

)
+ F

∣∣∇̄huh
∣∣) g0

on (0, T) × ωh,

uh = 0 on (0, T) × γh,

uh(0) = uini on ωh,

(6)

where g0, F and uini stand for the grid values of the func-
tions g0(x), F (x) and uini(x) respectively.

2.1. Explicit time discretization

The scheme (6) represents a system of ordinary differential
equations which can be solved by the Runge-Kutta meth-
ods. We use the Runge-Kutta-Merson method [26] with
adaptive choice of the integration step. Conveniently, the
adaptive choice of the integration step guarantees the sta-
bility of the method. Now we describe the algorithm of the
Runge-Kutta-Merson method for the scheme (6). We de-
note the right-hand side of the system by f

(
t, uh(t)

)
and

include the boundary condition in the system. Then, the
system can be rewritten in the form

duh

dt
= f

(
t, uh(t)

)
, (7)

where

f
(
t, uh

)
=

∇h ·

(
g0∇̄huh

)
+

(
1
ξ2 f0

(
uh

)
+ F

∣∣∇̄huh
∣∣) g0

on (0, T) × ωh,

0 on (0, T) × γh.

(8)
The algorithm of the method reads as follows (see [26]):

1. Set uh
i,j := uini(ih1, jh2) for i = 0, . . . , N1, j =

0, . . . , N2 and τ := τ0 for arbitrary τ0 > 0.
2. Compute grid functions k1, . . . , k5 as:

k1
i,j := f

(
t, uh

)
i,j

, (9)

k2
i,j := f

(
t +

τ

3
, uh +

τ

3
k1

)
i,j

, (10)

k3
i,j := f

(
t +

τ

3
, uh +

τ

6
k1 +

τ

6
k2

)
i,j

, (11)

k4
i,j := f

(
t +

τ

2
, uh +

τ

8
k1 +

3τ

8
k3

)
i,j

, (12)

k5
i,j := f

(
t + τ, uh +

τ

2
k1 − 3τ

2
k3 + 2τk4

)
i,j

(13)

for i = 0, . . . , N1, j = 0, . . . , N2.
3. Evaluate the local truncation error

e := τ · max
i=0,...,N1
j=0,...,N2

∣∣∣∣ 1
15

k1
i,j −

3
10

k3
i,j +

4
15

k4
i,j −

1
30

k5
i,j

∣∣∣∣ .

(14)

Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata and Vı́tězslav Žabka 75

4. If e is smaller than given tolerance ε, set t = t+ τ and
update the solution:

uh
i,j := uh

i,j +
τ

6
(
k1

i,j + 4k4
i,j + k5

i,j

)
(15)

for i = 0, . . . , N1, j = 0, . . . , N2.
5. Update the integration step size as

τ := min
{

0.8 τ
(ε

e

)0.2

, T − t

}
. (16)

If τ > 0, go to step 2.

2.2. Semi-implicit time discretization

In order to discretize the scheme (6) in time, we introduce
a time step τ > 0 and denote uh,k = uh(kτ). We use the
fully-discrete semi-implicit scheme in the following form at
the time level k:

uh,k − uh,k−1

τ
= ∇h ·

(
g0∇̄huh,k

)
+

g0

ξ2
f0

(
uh,k−1

)
+

g0F
∣∣∇̄huh,k−1

∣∣ on ωh,

uh,k = 0 on γh,

uh,0 = uini on ωh.

(17)

The scheme can be written as a system of linear equations

Auk = bk, (18)

where the vector uk is composed of the values uh,k
i,j and

the matrix A is sparse with one or five nonzero elements
in each row. We solve the system by the GMRES method
[21].

3. CUDA architecture

NVIDIA CUDA (Compute Unified Device Architecture) is
a general-purpose computing architecture designed to take
advantage of GPUs’ computational power. It supports var-
ious programming languages or application programming
interfaces such as CUDA C, which is a simple extension
of the C programming language, CUDA Fortran, OpenCL
and DirectCompute. Currently, CUDA applications work
only on NVIDIA GPUs.

GPU, denoted as device, serves as a highly parallel pro-
grammable coprocessor to the CPU, denoted as host. It
contains a scalable array of SIMT (single instruction, mul-
tiple thread) multiprocessors. The SIMT architecture is
analogous to SIMD (single instruction, multiple data). Un-
like SIMD, it enables programmers to write thread-level
parallel code for independent, scalar threads, as well as
data-parallel code for coordinated threads [19]. Device
functions executed in parallel by different CUDA threads
are called kernels.

Each multiprocessor executes hundreds of threads in
groups of 32 threads called warps. Threads on a multipro-
cessor are organized in thread blocks, which may contain

up to 1024 threads on current GPUs. Threads within a
block can synchronize their execution and share data by
fast shared memory. Cooperation of threads in different
blocks is limited.

All threads have access to the same global memory.
Global memory resides in device memory and is more plen-
tiful but slower than shared memory. A very important
performance consideration is coalescing global memory ac-
cesses. Global memory should be viewed in terms of seg-
ments of thirty-two 32-bit or 64-bit words aligned to 32
times the size of the word. If the kth thread in a warp
accesses the kth word in one segment, the accesses are coa-
lesced into one transaction. Otherwise, more transactions
are issued, and the memory throughput decreases. How-
ever, the requirements to achieve coalescing are much more
relaxed for newer devices. Reading from cached texture
memory, which also resides in device memory, might lead to
better performance than uncoalesced reading from global
memory [18].

There are many significant hardware differences between
CPU hosts and GPU devices. It is recommended to par-
tition applications so that both systems carry out compu-
tations they are suitable for. Devices are especially well
suited for computations that can be run on numerous data
elements in parallel, e.g. arithmetic operations on vectors
and matrices. In order to get maximum performance, it is
necessary to maximize the amount of code which can be
parallelized.

4. Implementation in CUDA

4.1. Runge-Kutta-Merson method

We implement the Runge-Kutta-Merson algorithm de-
scribed in Section 2. The grid functions uh, k1, . . . , k5 are
allocated as arrays U, K1, . . . , K5 of length (N1 +1)(N2 +1)
in device memory and operations on them are performed
for all their elements in parallel. At the beginning of the
algorithm, the values uini(ih1, jh2) are copied to array U,
then they are processed by the device, and, at the end, the
array U contains the result of the algorithm.

Implementation of three basic operations in CUDA is
necessary: the linear combination of arrays (steps 2, 3 and 4
of the algorithm), finding the maximum magnitude element
of an array (step 3) and evaluation of the right-hand side
function (step 2).

The implementation of the linear combination of arrays
stored in device memory is straightforward. In Listing 1
we show the CUDA kernel for the operation y = a1*x1 +
a2*x2, where y, x1, x2 are arrays and a1, a2 given con-
stants. Linear combinations of more than two arrays are
implemented similarly.

In the CUDA architecture, the maximum magnitude el-
ement of an array is typically obtained by a parallel reduc-
tion [10]. We use its reference implementation from the
CUBLAS library — the cublasIdamax() function.

The right-hand side function f given by (8) is evaluated
in f_kernel() (see Listing 2). Each element of the re-

76 Journal of Math-for-Industry, Vol. 3 (2011C-10)

__global__ void
lincomb_kernel(double *y, int length ,

double a1, double *x1,
double a2, double *x2)

{
int tid = blockIdx.x*blockDim.x + threadIdx.x;
if (tid < length)

y[tid] = a1*x1[tid] + a2*x2[tid];
}

Listing 1: CUDA kernel for the linear combination of two
arrays of given length in global device memory.

texture <int2 , 1, cudaReadModeElementType > texU;
texture <int2 , 1, cudaReadModeElementType > texG;

__device__ double
fetch(texture <int2 , 1, cudaReadModeElementType > tex ,

int index)
{

int2 v = tex1Dfetch(tex , index);
return __hiloint2double(v.y, v.x);

}

__global__ void
f_kernel(double *fu , int N1, int N2, double *F,

double h1 , double h2, double ksi)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
int j = blockIdx.y*blockDim.y + threadIdx.y;
if (i <= N1 && j <= N2) {

int index = j*(N1 + 1) + i;

if (i == 0 || i == N1 || j == 0 || j == N2)
fu[index] = 0.0;

else {
double u = fetch(texU , index);
double g = fetch(texG , index);

double bdx = (u - fetch(texU , index - 1))/h1;
double bdy = (u - fetch(texU , index - 1 - N1))/h2;
double fdx = (fetch(texU , index + 1) - u)/h1;
double fdy = (fetch(texU , index + 1 + N1) - u)/h2;

fu[index] =
(fetch(texG , index + 1)*fdx - g*bdx)/h1 +
(fetch(texG , index + 1 + N1)*fdy - g*bdy)/h2 +
g*(u*(1.0 - u)*(u - 0.5)/(ksi*ksi) +

F[index]*sqrt(bdx*bdx + bdy*bdy));
}

}
}

Listing 2: CUDA kernel for evaluation of the right-hand
side function f given by (8).

sulting array is computed by a single CUDA thread; the
threads are organized in two-dimensional blocks, and they
do not cooperate. According to (8), five values uh

i−1,j ,
uh

i,j−1, uh
i,j , uh

i,j+1, uh
i+1,j are needed to compute f(t, uh)i,j

on ωh, and the same holds for the values of the function
g0. We use texture memory and read these values from
textures texU and texG.

4.2. GMRES method

A detailed description of the GMRES method can be found
in [22]. Our CUDA implementation comprises four opera-
tions with matrices and vectors: the linear combination of
vectors, the Euclidean norm of a vector, the dot product of
two vectors and the sparse matrix-vector product. In order
to avoid unnecessary data transfers between the device and

the host we also assemble the right-hand side vectors bk on
the device using a kernel similar to f_kernel() presented
in Listing 2.

We already discussed the implementation of the lin-
ear combination of vectors in Section 4.1. To compute
the Euclidean norm of vectors and the dot product we
use functions cublasDnrm2() and cublasDdot() from the
CUBLAS library.

Effective implementation of the sparse matrix-vector
product is crucial for many numerical algorithms and has
been deeply investigated (see [3, 4, 16, 17, 25]). We use the
approach presented in [24], which is based on a special stor-
age format for sparse matrices called Row-Grouped CSR
(RgCSR). It is a modification of the CSR matrix storage
format, designed so that all global memory accesses during
matrix-vector multiplication are coalesced.

According to the RgCSR format, the matrix is divided
into groups. A group of size k consists of k consecutive
matrix rows. Rows 1 to k form the first group, rows k + 1
to 2k the second group etc. The overall number of groups of
a n×n matrix is ⌈n

k ⌉. The matrix is stored in the following
four arrays (see Fig. 1):

• values[] — array of nonzero elements of the matrix.
First k elements of the array represent the first nonzero
matrix elements in rows of the first group, next k el-
ements represent second nonzero matrix elements in
rows of the first group etc. If there are not enough
nonzero elements in some row, their places in the ar-
ray remain unused. When all nonzero elements of the
first group are stored, the same procedure is applied to
other groups. Let r1, . . . , rn be the numbers of nonzero
elements in the rows of the matrix and

mi = max{r(i−1)k+1, r(i−1)k+2, . . . , rik} (19)

for i = 1, . . . , ⌈n
k ⌉. Then the ith group occupies kmi

elements in the array and the overall length of the
array is

M =
⌈n

k ⌉∑
i=1

mi . (20)

• columns[] — array of column indices. Its elements are
the column indices of corresponding elements of the
values[] array. Both arrays have the same length.

• rowSizes[] — array of the row sizes r1, . . . , rn.
• groupPtrs[] — array of length ⌈n

k ⌉ containing indices
of first elements of groups in the values[] array, i.e.
numbers 0, km1, k(m1+m2), . . . , k

∑p
i=1 mi where p =

⌈n
k ⌉ − 1.

Our CUDA kernel for the sparse matrix-vector product
is presented in Listing 3. Each CUDA thread computes
one component of the resulting vector y. The kernel uses
shared memory as a user-managed cache for elements of the
groupPtrs[] array. It needs blockDim.x/k*sizeof(int)
bytes of shared memory per CUDA block to execute. If the
group size k is divisible by the warp size, all global device
memory accesses are fully coalesced.

Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata and Vı́tězslav Žabka 77

a
b

c
d
e f g

h i j k
l m n o

p

values[]:
a b c d e h l p f i m g j n k o

columns[]:
0 1 2 3 3 1 2 7 4 4 5 5 5 6 6 7

rowSizes[]: 1 1 1 1 3 4 4 1

groupPtrs[]: 0 4

Figure 1: Example of RgCSR sparse matrix storage format
for group size k = 4. The matrix has 8 rows, so the number
of groups is 2. The first group occupies 4 elements of the
values[] array.

texture <int2 , 1, cudaReadModeElementType > texX;

__global__ void
spmv_kernel(double *Ax , int n, int k, double *values ,

int *columns , int *rowSizes , int *groupPtrs)
{

extern __shared__ int groupPtrsCache [];

int offset , groupIndex;
int rowIndex = blockIdx.x*blockDim.x + threadIdx.x;
if (rowIndex < n) {

groupIndex = threadIdx.x/k;
offset = threadIdx.x%k;
if (offset == 0)

groupPtrsCache[groupIndex] = groupPtrs[rowIndex/k];
}

__syncthreads ();

if (rowIndex < n) {
double value = 0.0;
int index = groupPtrsCache[groupIndex] + offset;
for (int i = 0; i < rowSizes[rowIndex]; i++) {

value += values[index]*fetch(texX , columns[index]);
index += k;

}

Ax[rowIndex] = value;
}

}

Listing 3: CUDA kernel for RgCSR sparse matrix-vector
product.

5. Results

We tested the presented CUDA implementations of the im-
age segmentation algorithms on magnetic resonance images
of the human heart (see Fig. 2). The segmentation can
be used to determine the volume of cardiac ventricles and
help in diagnosis of heart diseases [8, 9]. We performed all
computations using double precision floating point arith-
metics. We compared running times of the CUDA im-
plementations on NVIDIA GeForce GTX 480 (480 cores,
1.4 GHz) with running times of the corresponding multi-
threaded OpenMP implementations on AMD Opteron 6172
(12 cores, 2.1 GHz). The results are shown in Tables 1 and
2. The CUDA applications were significantly faster than
the 12-threaded CPU application, up to about 9 times for
the higher image resolution.

Figure 2: Image segmentation of the right heart ventricle.
The white line represents the segmentation curve. The ini-
tial condition is shown in the top left corner. Parameters:
L1 = L2 = 1, N1 = N2 = 255, ξ = h1 + h2, g(s) = 1

1+s2 ,
Gσ is the Gaussian kernel, σ = 0.005, F ≡ 100.

6. Conclusion

We implemented the Runge-Kutta-Merson method and the
GMRES method in the CUDA architecture and applied
them to the numerical solution of problem (3) concerning
the image segmentation. We compared the CUDA imple-
mentations with corresponding multithreaded CPU imple-
mentations. We observed that the CUDA implementations
were about 3–9 times faster than the 12-threaded CPU im-
plementations.

Acknowledgements

This work was partially supported by the Research Di-
rection Project ”Applied Mathematics in Technical and
Physical Sciences” of the Ministry of Education of the
Czech Republic No. MSM6840770010 and by the project
”Advanced Supercomputing Methods for Implementa-
tion of Mathematical Models” of the Student Grant
Agency of the Czech Technical University in Prague No.
SGS11/161/OHK4/3T/14. MRI images were provided by

78 Journal of Math-for-Industry, Vol. 3 (2011C-10)

Resolution Run on Time RT
512 × 512 GPU 9.8 s 1.0

CPU (1 thread) 448 s 45.7
CPU (2 threads) 220 s 22.4
CPU (4 threads) 108 s 11.0
CPU (12 threads) 50 s 5.1

1024 × 1024 GPU 143 s 1.0
CPU (1 thread) 7780 s 54.4
CPU (2 threads) 4100 s 28.7
CPU (4 threads) 2300 s 16.1
CPU (12 threads) 1410 s 9.9

Table 1: Performance comparison of CPU and GPU image
segmentation using the Runge-Kutta-Merson method. The
last column shows segmentation duration relative to the
GPU implementation.

Resolution Run on Time RT
512 × 512 GPU 28 s 1.0

CPU (1 thread) 435 s 15.5
CPU (2 threads) 217 s 7.8
CPU (4 threads) 115 s 4.1
CPU (12 threads) 80 s 2.9

1024 × 1024 GPU 182 s 1.0
CPU (1 thread) 7410 s 40.7
CPU (2 threads) 3895 s 21.4
CPU (4 threads) 1905 s 10.5
CPU (12 threads) 1485 s 8.2

Table 2: Performance comparison of CPU and GPU image
segmentation using the GMRES method. The last column
shows segmentation duration relative to the GPU imple-
mentation.

Institute for Clinical and Experimental Medicine, Prague.

References

[1] Allen, S. and Cahn, J.: A microscopic theory
for antiphase boundary motion and its application
to antiphase domain coarsening, Acta Metallurgica,
27:1085–1095, 1979.

[2] Aubert, G. and Kornprobst, P.: Mathematical prob-
lems in image processing: Partial differential equa-
tions and the calculus of variations (second edi-
tion), Volume 147 of Applied Mathematical Sciences,
Springer Verlag, 2006.

[3] Baskaran, M. and Bordawekar, R.: Optimizing sparse
matrix-vector multiplication on GPUs, Research Re-
port RC24704, IBM TJ Watson Research Center,
2008.

[4] Bell, N. and Garland, M.: Efficient sparse matrix-
vector multiplication on CUDA, Technical Report
NVR-2008-004, NVIDIA Corporation, 2008.

[5] Beneš, M.: Mathematical and computational aspects
of solidification of pure substances, Acta Math. Univ.
Comenian., 70(1):123–152, 2001.

[6] Beneš, M. and Chalupecký, V. and Mikula, K.: Geo-
metrical image segmentation by the Allen-Cahn equa-
tion, Applied Numerical Mathematics, 51(2–3):187–
205, 2004.

[7] Beneš, M. and Kimura, M. and Pauš, P. and Ševčovič,
D. and Tsujikawa, T. and Yazaki, S.: Application of
a curvature adjusted method in image segmentation,
Bulletin of the Institute of Mathematics, Academia
Sinica (New Series), 3(4):509–523, 2008.

[8] Beneš, M. and Máca, R. and Tintěra, J.: Degener-
ate diffusion methods in computer image processing
and application, to appear in Journal of Math-for-
Industry.

[9] Bogaert, J. and Dymarkowski, S. and Taylor, A. M.:
Clinical cardiac MRI, Springer Verlag, 2005.

[10] Harris, M.: Optimizing parallel reduction in CUDA,
NVIDIA CUDA SDK, 2010.

[11] Ji, X. and Cheng, T. and Wang, Q.: A simula-
tion of large-scale groundwater flow on CUDA-enabled
GPUs, SAC ’10: Proceedings of the 2010 ACM Sym-
posium on Applied Computing, pp. 2402–2403, 2010.

[12] Kang, S. G. and Sun, P. J. and Kim, C. H. and Kim,
J.-M.: Power analysis for decoding of the digital audio
encoding format MP3: Decoding the central process-
ing unit and the graphics processing unit, The Jour-
nal of the Acoustical Society of America, 127(3):2037–
2037, 2010.

[13] Liu, W. and Schmidt, B. and Voss, G. and Muller-
Wittig, W.: Accelerating molecular dynamics simu-
lations using graphics processing units with CUDA,
Computer Physics Communications, 179(9):634–641,
2008.

[14] Manavski, S. and Valle, G.: CUDA compatible GPU
cards as efficient hardware accelerators for Smith-
Waterman sequence alignment, BMC Bioinformatics,
9(2): S10, 2008.

[15] Mikula, K. and Sarti, A.: Parallel co-volume subjec-
tive surface method for 3D medical image segmenta-
tion, In: Parametric and Geometric Deformable Mod-
els: An application in Biomaterials and Medical Im-
agery, Volume-II, Springer Publishers, (Eds. Jasjit S.
Suri and Aly Farag), pp. 123–160, 2007.

[16] Monakov, A. and Avetisyan, A.: Implement-
ing blocked sparse matrix-vector multiplication on
NVIDIA GPUs, In SAMOS ’09, pp. 289–297, 2009.

Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata and Vı́tězslav Žabka 79

[17] Monakov, A. and Lokhmotov, A. and Avetisyan, A.:
Automatically tuning sparse matrix-vector multiplica-
tion for GPU architectures, High Performance Embed-
ded Architectures and Compilers, 5th International
Conference, pp. 111–125, 2010.

[18] NVIDIA Corporation, CUDA C best practices guide,
Version 3.2, 2010.

[19] NVIDIA Corporation, NVIDIA CUDA programming
guide, Version 3.2, 2010.

[20] Rofouei, M. and Moazeni, M. and Sarrafzadeh, M.:
Fast GPU-based space-time correlation for activ-
ity recognition in video sequences, IEEE/ACM/IFIP
Workshop on Embedded Systems for Real-Time Mul-
timedia, pp. 33–38, 2008.

[21] Saad, Y. and Schultz, M.: GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems, SIAM Journal on Scientific and Sta-
tistical Computing, 7(3):856–869, 1986.

[22] Saad, Y.: Iterative methods for sparse linear systems,
Society for Industrial and Applied Mathematics, 2003.

[23] Trebien, F. and Oliveira, M.: Realistic real-time
sound re-synthesis and processing for interactive vir-
tual worlds, The Visual Computer, 25(5):469–477,
2009.

[24] Vacata, J.: GPGPU: General purpose computation on
GPUs, Master’s thesis, FNSPE CTU in Prague, 2008.

[25] Vázquez, F. and Garzón, E. and Mart́ınez, J. and
Fernández, J.: The sparse matrix vector product on
GPUs, Technical Report, University of Almeŕıa, 2009.

[26] Vitásek, E.: Numerické metody, SNTL, Prague, 1987.

[27] Zhu, J. and Liu, Y. and Bao, K. and Chang, Y. and
Wu, E.: Realtime simulation of burning solids on
GPU with CUDA, 10th IEEE International Confer-
ence on Computer and Information Technology, pp.
1219–1224, 2010.

Tomáš Oberhuber, Jan Vacata and Vı́tězslav Žabka
Department of Mathematics, Faculty of Nuclear Sciences
and Physical Engineering, Czech Technical University in
Prague
E-mail: tomas.oberhuber(at)fjfi.cvut.cz

jan.vacata(at)seznam.cz
zabkavit(at)fjfi.cvut.cz

Atsushi Suzuki
CERMICS ENPC, France
E-mail: atsushi.suzuki(at)ann.jussieu.fr

