
Journal of Math-for-Industry, Vol. 3 (2011B-3), pp. 107–112

A案 B案

D案 E案 F案

C案

On random walks of Pollard’s rho method for the ECDLP on Koblitz
curves

Masaya Yasuda, Tetsuya Izu, Takeshi Shimoyama and Jun Kogure

Received on August 24, 2011

Abstract. Pollard’s rho method is the asymptotically fastest known attack for the elliptic curve
discrete logarithm problem (ECDLP) except special cases. It works by giving a pseudo-random
sequence defined by an iteration function and then detecting a collision in the sequence. We note
that the number of iterations before obtaining a collision is significant for the running time of the rho
method and depends on the choice of an iteration function. For many iteration functions suitable
for the ECDLP on elliptic curves except Koblitz curves, the number of iterations before obtaining
a collision had been investigated. In this paper, we propose a new iteration function on Koblitz
curves which is an extension of the iteration function proposed by Gallant et al. and analyze the
performance on our iteration function experimentally.

Keywords. Pollard’s rho method, ECDLP, Koblitz curves, Frobenius map

1. Introduction

In 1985, Neal Koblitz and Victor Miller independently pro-
posed using elliptic curves to design public-key crypto-
graphic systems (see [4, 9, 12]). The hardness of the ellip-
tic curve discrete logarithm problem (ECDLP) is essential
for the security of all elliptic curve cryptographic schemes.
The ECDLP is as follows: given an elliptic curve E de-
fined over a finite field Fq, a point S ∈ E(Fq) of order n,
and a point T ∈ ⟨S⟩, find the integer k ∈ [0, n − 1] with
T = kS. Although a number of ways to solve the ECDLP
is known, Pollard’s rho method [14] is the asymptotically
fastest known attack for the ECDLP except special cases
including the supersingular cases and the anomalous cases
(see [9, 13, 15, 16, 18]).

In the rho method, an iteration function f : ⟨S⟩ → ⟨S⟩
is used to define a sequence {Xi} by Xi+1 = f(Xi) for
i = 0, 1, 2, . . . with a starting point X0. Furthermore, f
should have the characteristic of a random function. Since
the set ⟨S⟩ is finite, the sequence will eventually meet a
point that has occurred before, which is called a collision,
and then cycle forever. Since a collision gives the solu-
tion of the ECDLP with high probability, the number of
iterations before obtaining a collision is significant for the
running time of the rho method. Improved by Wiener and
Zuccherato [22], van Oorschot and Wiener [21], and Gal-
lant, Lambert and Vanstone [8], the rho method can be
efficiently parallelized and can be sped up using group au-
tomorphisms. In particular, the rho method can be sped
up by a factor of

√
2m for Koblitz curves over F2m us-

ing the Frobenius map and the Negation map. By the
birthday paradox, the expected number of iterations on
Koblitz curves before obtaining a collision is approximately

1
2

√
πn/m (see [9] for details). However, since the rho

method is a probabilistic algorithm, the number of itera-
tions before obtaining a collision is dependent on the choice
of an iteration function f and a starting point X0.

In this paper, we propose a new iteration function on
Koblitz curves which is an extension of the iteration func-
tion proposed by Gallant, Lambert and Vanstone [8], and
analyze the performance of our iteration function experi-
mentally. To analyze the performance of an iteration func-
tion f on elliptic curves, we consider the value

δ(f) :=
(

The number of iterations f
before obtaining a collision

)/
Exp,

where ‘Exp’ is the expected number of iterations before ob-
taining a collision. For many iteration functions f suitable
for solving the ECDLP on elliptic curves except Koblitz
curves, the average value of δ(f) was investigated by Teske
[19, 20], and Bai and Brent [1]. By many experiments of
solving the ECDLP on Koblitz curves of relatively short
parameters, we estimate the average value of δ(f) with our
iteration function f . In particular, we estimate the aver-
age value of δ(f) with the iteration function f proposed by
Gallant, Lambert, and Vanstone [8] experimentally.

2. Review on Pollard’s rho method for
the ECDLP

To fix our notation, we here review on the rho method for
the ECDLP due to [9].

107



108 Journal of Math-for-Industry, Vol. 3 (2011B-3)

2.1. The basic idea of the rho method for the
ECDLP

Definition 1. The elliptic curve discrete logarithm prob-
lem (ECDLP) is as follows: given an elliptic curve E de-
fined over a finite field Fq, a point S ∈ E(Fq) of order n,
and a point T ∈ ⟨S⟩, find the integer k ∈ [0, n − 1] with
T = kS.

We define an iteration function f : ⟨S⟩ → ⟨S⟩ such that
it is easy to compute X ′ = f(X) and c′, d′ ∈ [0, n− 1] with
X ′ = c′S+d′T for given X = cS+dT . For a starting point
X0 = c0S + d0T with randomly chosen c0, d0 ∈ [0, n − 1],
we define a sequence {Xi} by Xi+1 = f(Xi) for i ≥ 0. It
follows from the definition of iteration functions that we
can compute ci, di ∈ [0, n − 1] with Xi = ciS + diT . Since
the set ⟨S⟩ is finite, the sequence will eventually meet a
point that has occurred before, which is called a collision,
and then cycle forever. A collision Xi = Xj with i ̸= j
gives the equation

ciS + diT = cjS + djT.

Since we have (ci − cj)S = (dj − di)T = (dj − di)kS, we
can compute the solution

k = (ci − cj) · (dj − di)−1 mod n

of the ECDLP if dj − di ∈ (Z/nZ)∗. This is the idea of
the rho method for the ECDLP (see [9, pp. 157–158] for
details).

For solving the ECDLP efficiently, an iteration function
f should have the characteristic of a random function, and
the expected number of iterations before obtaining a colli-
sion is approximately

√
πn/2 ≈ 1.2533

√
n by the birthday

paradox if f is a random function [9, p. 157]. However, in
fact, the number of iterations before obtaining a collision
is heavily dependent on the choice of an iteration function.

Remark 1. A typical iteration function is as follows: Let
{H1,H2, · · · ,HL} be a random partition of the set ⟨S⟩ into
L sets of roughly the same size. We write H(X) = j if X ∈
Hj and call H the partition function. For aj , bj ∈R [0, n−1]
for 1 ≤ j ≤ L, set Mj = ajS + bjT ∈ ⟨S⟩. Then we can
give an iteration function f : ⟨S⟩ → ⟨S⟩ defined by

f(X) = X + Mj , where j = H(X).

For given X = cS + dT , we can compute X ′ = f(X) =
c′S + d′T with c′ = c + aj mod n and d′ = d + bj mod n.
This iteration function is called an L-adding walk proposed
by Teske (see [1, 19, 20]). For many iteration functions
suitable for the ECDLP on elliptic curves except Koblitz
curves, the number of iterations before obtaining a collision
was investigated by Teske [19, 20], and Bai and Brent [1].
For example, we give Table 1: All the data in Table 1
denote the average number of iterations before obtaining
a collision by solving the ECDLP on prime fields of 5–13
digits.

Table 1: Performance of iteration functions on elliptic
curves on prime fields

Iteration functions fP fP G fT A[20] fT M[16:4]

(average of iterations)/
√

n 1.60 1.62 1.29 1.30
(average of iterations)/Exp 1.28 1.29 1.03 1.04

Exp =
√

πn/2 (in this case), fP : Pollard’s original iteration
function [14], fPG: Pollard’s iteration function generalized by
Teske, fTA[20]: Teske’s L-adding walk with L = 20 explained in
Remark, and fTM [16:4]: Teske’s mixed-walk with 16 multipliers
and 4 squarings (see [19] for details)

2.2. Improving Pollard’s rho method

2.2.1. Parallelized Pollard’s rho method:

Van Oorshot and Wiener [21] proposed a variant of Pol-
lard’s rho method that yields a factor M speed up when
M processors are employed. The idea is to allow the se-
quences {Xi} generated by the processors to collide with
one another. More precisely, each processor randomly se-
lects its own starting point X0, but all processors use the
same iteration function f to compute subsequent points
Xi.

2.2.2. Collision detection:

Floyd’s cycle-finding algorithm [11] finds a collision in the
sequence generated by a single processor. The following
strategy enables efficient finding of a collision in the se-
quences generated by different processors. An easy testable
distinguishing property of points is selected. For example,
a point may be distinguished if the leading t bits of its x-
coordinate are zero. Let 0 < θ < 1 be the proportion of
points in the set ⟨S⟩ having this distinguishing property.
Whenever a processor encounters a distinguished point, it
transmits the point to a central server which store it in a
sorted list. When the server receives the same distinguished
point for the second time, it computes the desired loga-
rithm and terminates all processors. The expected number
of iterations per processor before obtaining a collision is
(
√

πn/2)/M , when M processors are employed. A subse-
quent distinguished point is expected after 1/θ iterations.
Hence the expected number of elliptic curve operations per-
formed by each processor before observing a collision of
distinguished points is

1
M

√
πn

2
+

1
θ
.

We note that the running time of 1/θ iterations after a
collision occurs is negligible for the total running time if
we select θ such that 1/θ is small enough compared to the
order n of the point S.

3. Speeding Pollard’s rho method for
Koblitz curves

Koblitz curves were first suggested for use in cryptography
by Koblitz [12]. The defining equation for a Koblitz curve



Masaya Yasuda, Tetsuya Izu, Takeshi Shimoyama and Jun Kogure 109

E is
y2 + xy = x3 + ax2 + b,

where a, b ∈ F2 with b ̸= 0. The Frobenius map ϕ :
E(F2m) → E(F2m) is defined by

ϕ : (x, y) 7→ (x2, y2) and ϕ : O 7→ O,

where O is the point of infinity. We note that the Frobe-
nius map is a group homomorphism of order m and can
be efficiently computed since squaring in F2m is relatively
inexpensive (see [9] for details). Using the Frobenius map
and the Negation map, the rho method for the ECDLP on
Koblitz curves E is sped up. The relation ∼ on the set ⟨S⟩
defined by

P ∼ Q if and only if P = ±ϕj(Q) for some j ∈ [0,m − 1]

is an equivalence relation. We denote the set of equivalence
classes by E/∼, and let [P ] denote the equivalence class
containing a point P . The idea behind the speedup is to
modify an iteration function on E so that it is defined on
E/∼. Since most equivalence classes have size 2m, then the
collision search space has size approximately n/2m. Hence
the expected running time of the rho method accelerated
by Frobenius map is

1
2

√
πn

m
,

which is a speed up by a factor of
√

2m.

3.1. A typical iteration function on Koblitz
curves

Gallant, Lambert and Vanstone in [8] proposed an iteration
function suitable for the rho method with speedup by the
Frobenius map as follows. We define an iteration function
on E

g : R → R + ϕt(R), where t = hashm(L(R)),

where hashm is a conventional hash function (in the com-
puter science) having range [0,m − 1] and L is a labelling
function from the equivalence classes in E/∼ to some set
of representatives. For example, the labelling function L
takes the lexicographically least x-coordinate of the ele-
ments of the equivalent class. We note that computing
R + ϕt(R) is about the same work as a point addition on
E since computing ϕt(R) is reasonably easy. Using the it-
eration function g, we give an iteration function f on E/∼
defined by

f([R]) = [g(R)], for R ∈ E,

which is the iteration function proposed by Gallant, Lam-
bert and Vanstone [8]. We note that the iteration function
f is a well-defined map on E/∼.
Remark 2. For solving the ECC2K-130 challenge problem
[5, 6], Bailey et al. in [3] proposed an iteration function on
E/∼ as follows:

f([R]) = [g(R)], g(R) = R + ϕt(R),
t = ((HW(xR)/2 mod 8) + 3),

where HW(xR) is the Hamming weight of the x-coordinate
xR of a point R ∈ E. Compared to the iteration function
proposed by Gallant, Lambert, and Vanstone, this iteration
function may reduce the randomness of the walk in the rho
sequence since the index t satisfies 3 ≤ t ≤ 10 (see [3]
for details). We note that this iteration function has an
advantage of the computational speed.

3.2. Our iteration function

For 0 ≤ s ≤ m, we define an iteration function on E given
by

gs(R) =
{

2R if 0 ≤ t < s,
R + ϕt(R) otherwise,

where t = hashm(L(R)) ∈ [0, m − 1]. Our iteration func-
tion fs on E/∼ is defined by fs([R]) = [gs(R)]. Clearly, our
iteration function fs with s = 0 is the same as the itera-
tion function proposed by Gallant, Lambert and Vanstone.
Hence our iteration function is an extension of the itera-
tion function proposed by Gallant, Lambert and Vanstone,
based on the Teske’s idea [19]. We note that our iteration
function is also a well-defined map on E/∼. The cost t(gs)
of computing gs is

t(gs) =
s

m
· S +

m − s

m
· M,

where M is the cost of a point addition on E and S is
the cost of a point doubling on E, if we neglect the cost
of computing ϕt(R). Since we must compute gs and L in
computing fs, we see that the cost t(fs) of computing fs

is equal to t(gs)+ t(L) where t(L) is the cost of computing
L. In the case of s = 0, Gallant, Lambert and Vanstone in
[8, p. 1702] estimate t(L) = 0.2 · t(g0) and hence t(f0) =
1.2 · t(g0). For the further comparison in this paper, we
choose t(fs) = 1.2 · t(gs) for any s, which is the highest
cost estimation for our proposed scheme. Therefore we
can compute gs and fs with high speed as the parameter
s become large if a point doubling is faster than a point
addition on E.

4. Experimental investigation

In this section, we analyze the performance on our iteration
function fs by many experiments of solving the ECDLP on
Koblitz curves of relatively small parameters.

4.1. Description of experiments

To analyze the performance on our iteration function fs,
we solved the ECDLP on Koblitz curves under the fol-
lowing conditions and collected the data of the number of
iterations before obtaining a collision:

• We used parallelized Pollard’s rho method with
M = 10 processors, collision detection using dis-
tinguished points and our iteration function fs for
s = 0,m/5,m/3, m/2.



110 Journal of Math-for-Industry, Vol. 3 (2011B-3)

• For each parameter of the ECDLP on Koblitz curves
and each iteration function, we solved the ECDLP for
100 times with randomly chosen starting points.

• The solving ECDLP parameters are denoted by
ECC2K-41, ECC2K-53, ECC2K-83 and ECC2K-89
(see below).

4.2. Parameters of the ECDLP on Koblitz
curves

We describe the parameters of the ECDLP on Koblitz
curves as follows:

• Description of each parameter

– m: the order of the finite field is 2m.
– a, b: the field elements in F2 which define the

elliptic curve E : y2 + xy = x3 + ax2 + b.
– f : the reduction polynomial which defines the

polynomial basis representation of F2m (f is rep-
resented in hexadecimal).

– n: the order of the point S; n is a prime number.
– h: the co-factor (the number of points in E(F2m)

divided by n).
– xS , yS : the x- and y- coordinates of the point S.
– xT , yT : the x- and y- coordinates of the point T .

• List of the parameters of the ECDLP on Koblitz curves

– ECC2K-41

m = 41, a = 0, b = 1
f = 20000000009
n = 800008CE1F (≈ 39bit)
h = 4
xS = 11CA4FC0912
yS = 14C103D4BF1
xT = 173AE716000
yT = 1F8511BA580

– ECC2K-53

m = 53, a = 0, b = 1
f = 20000000000047
n = 1323E34C2FD1 (≈ 44bit)
h = 1AC
xS = D1372FE8A9D59
yS = 817E6D0A220B9
xT = AEEEFC38145B6
yT = 1AE8D2DD5175D6

– ECC2K-83

m = 83, a = 1, b = 1
f = 800000000200000000007
n = 1E722CD0C26963 (≈ 53bit)
h = 434442CA
xS = 14B4C858FD773EFE30A41
yS = 22F9797E1981BD7750CBC
xT = 5374B930E6A5A75E910C9
yT = 2E7F26B3A696E98555167

– ECC2K-89

m = 89, a = 0, b = 1
f = 20000000000004000000001
n = 61D035AC14F7357 (≈ 58bit)
h = 53C05A24
xS = E757BC1D481ED8AAE2F53F
yS = 1C4EDA2EA43480E1820958
xT = 5BF5E00A5CF3D704FEDAF3
yT = F6DA9E382DD26B77E43856

Remark 3. The Koblitz curve used in cryptography has
a cofactor h = 2, 4. Since the defining equation for a
Koblitz curve is special, there exist few Koblitz curves with
h = 2, 4 for m < 100. We here choose Koblitz curves
with small cofactor h as the parameters of the ECDLP for
Koblitz curves. Moreover, we used parallelized Pollard’s
rho method with collision detection using distinguished
points having 1/θ small enough compared with the order
n of the point S, where θ is the proportion of points in
⟨S⟩ having the distinguishing property (1/θ : 8 ∼ 12bit).
Therefore 1/θ iterations after a collision occurs is negligi-
ble.

4.3. Our experimental results

In Table 2, we summarize the performance of our iteration
function fs for s = 0,m/5, m/3,m/2 on each parameter
of the ECDLP on Koblitz curves. In Table 2, we give the
following data:

• µ: the average number of iterations before a collision
with fs.

• δ(fs): the value given by µ/Exp, where Exp =
1
2

√
πn/m is the expected number of iterations before

obtaining a collision (see §3).

• σ/Exp: standard deviation σ divided by Exp.

In Table 3, we summarize the average value of δ(fs) from
Table 2. From Table 3, we can see the followings in our
experiments:

• For a random function f , we have δ(f) = 1. Since the
average value of δ(fs) with s = 0 is 1.05, the iteration
function proposed by Gallant, Lambert and Vanstone
has a performance almost equal to a random function
on E/∼.

• The average number of iterations fs before obtaining
a collision increases as the parameter s become large.
Therefore it follows from §3.2 that there is a relation of
trade-off between the computational speed of fs and
the number of iterations before obtaining a collision
with fs, if a point doubling is faster than a point ad-
dition on E.

• From our assumption t(fs) = 1.2 × t(gs) in §3.2, the
average running time of the rho method with our iter-
ation function fs is upper-bounded by

∆(s) = (average value of δ(fs)) × t(fs).



Masaya Yasuda, Tetsuya Izu, Takeshi Shimoyama and Jun Kogure 111

Table 2: Performance of our iteration function on ECC2K-
41, 53, 83, 89

Parameter of
the ECDLP

Iteration
function fs

Av. of the
number of it-
erations (µ)

Av. value
for δ(fs)
(µ/Exp)

St. de-
viation
(σ/Exp)

ECC 2K-41 s = 0 109789 1.06 0.52
s = m/5 117708 1.14 0.64
s = m/3 133100 1.29 0.64
s = m/2 120467 1.17 0.62

ECC2K-53 s = 0 616273 1.10 0.56
s = m/5 540220 0.96 0.50
s = m/3 628533 1.12 0.59
s = m/2 706519 1.26 0.65

ECC2K-83 s = 0 9362605 1.03 0.49
s = m/5 8979741 0.99 0.56
s = m/3 11278465 1.25 0.59
s = m/2 10531561 1.16 0.63

ECC2K-89 s = 0 64270064 1.01 0.48
s = m/5 74819712 1.20 0.62
s = m/3 67569759 1.08 0.58
s = m/2 80869338 1.29 0.60

Exp = 1
2

√
πn
m

= 102620 (ECC2K-41), 558438 (ECC2K-53),
905047 (ECC2K-83), 62348200 (ECC2K-89).

Table 3: Average value of δ(fs) for s = 0, m/5,m/3,m/2
on ECC2K-41, 53, 83, 89.
Parameter of Iteration function fs

the ECDLP s = 0 s = m/5 s = m/3 s = m/2
ECC2K-41 1.06 1.14 1.29 1.17
ECC2K-53 1.10 0.96 1.12 1.26
ECC2K-83 1.03 0.99 1.25 1.16
ECC2K-89 1.01 1.20 1.08 1.29

average 1.05 1.07 1.18 1.22

In the case S = 0.8M , we have

∆(s) =


1.05 · 1.2M ≈ 1.26M (s = 0)
1.07 · 1.15M ≈ 1.23M (s = m/5)
1.18 · 1.12M ≈ 1.32M (s = m/3)
1.22 · 1.08M ≈ 1.32M (s = m/5)

from Table 3 and §3.2. Therefore we see that our it-
eration function fs with s = m/5 is the most suitable
for solving the ECDLP on Koblitz curves in the case
S = 0.8M on average.

5. Conclusion

Gallant, Lambert and Vanstone in [8] proposed an iter-
ation function suitable for solving the ECDLP on Koblitz
curves. In this paper, we proposed a new iteration function
fs on Koblitz curves which is an extension of their itera-
tion function based on the Teske’s idea [19] and analyzed
the performance of our iteration function experimentally.
By many experiments of solving the ECDLP on Koblitz
curves of relatively small parameters (ECC2K-41, ECC2K-
53, ECC2K-83, ECC2K-89), we obtained the average value
of the number of iterations before obtaining a collision in
Table 3. We showed the followings in our experiments: The
iteration function proposed by Gallant, Lambert and Van-
stone has a performance almost equal to a random function

on E/∼. Furthermore, in the case S = 0.8M , our itera-
tion function fs with s = m/5 is more suitable for solving
the ECDLP on Koblitz curves than the iteration function
proposed by Gallant, Lambert and Vanstone.

References

[1] S. Bai and R. P. Brent, “On the efficiency of Pollard’s
rho method for discrete logarithms”, In Proceedings
of CATS ’2008, pp. 125–131, (2008).

[2] D. V. Bailey et. al., “The Certicom Challenges
ECC2-X”, available at http://binary.cr.yp.to/
ecc2x-20090901.pdf, (2009).

[3] D. V. Bailey et. al., “Breaking ECC2K-130,” available
at http://eprint.iacr.org/2009/541.pdf, (2009).

[4] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in
Cryptography, Cambridge University Press, (1999).

[5] Certicom, Certicom ECC Challenge, available
at http://www.certicom.jp/images/pdfs/
cert ecc challenge.pdf, (1997).

[6] Certicom, Curves List, available at http://www.
certicom.jp/index.php/curves-list, (1997).

[7] J. Delescaille and J. Quisquater, “How easy is collision
search? Application to DES”, Advances in Cryptology-
EUROCRYPT 1989, LNCS 434, pp. 429–434, (1990).

[8] R. Gallant, R. Lambert and S. Vanstone, “Improv-
ing the Parallelized Pollard Lambda Search on Bi-
nary Anomalous Curves,” Mathematics of Computa-
tion 69, pp. 1699–1705, (2000).

[9] D. Hankerson, A. Menezes and S. Vanstone, Guide
to Elliptic Curve Cryptography, Springer Professional
Computing, (2004).

[10] R. Harley, Elliptic curve discrete logarithms project,
available at http://pauillac.inria.fr/∼harley/
ecdl/.

[11] D. Knuth, The art of computer programming, Seminu-
merical Algorithms, vol. II, Addison-Wesley. Reading
(1969).

[12] N. Koblitz, “Elliptic curve cryptosystems,” Mathe-
matics of Computation 48, pp. 203–209, (1987).

[13] A. Menezes, T. Okamoto and S. Vanstone, “reduc-
ing elliptic curve logarithms to logarithms in a finite
field,” IEEE Transactions on Information Theory 39,
pp. 1639–1646, (1993).

[14] J. Pollard, “Monte Carlo methods for index compu-
tation mod p,” Mathematics of Computation 32, pp.
918–924, (1978).



112 Journal of Math-for-Industry, Vol. 3 (2011B-3)

[15] T. Satoh and K. Araki, “Fermat quotients and the
polynomial time discrete log algorithm for anomalous
elliptic curves,” Commentarii Mathematici Universi-
tatis Sancti Pauli 47, pp. 81–92, (1998).

[16] I. Semaev, “Evaluation of discrete logarithms in a
group of p-torsion points of an elliptic curve in charac-
teristic p,” Mathematics of Computation 67, pp. 353–
356, (1998).

[17] J. H. Silverman, The Arithmetic of Elliptic Curves,
Graduate Texts in Math. Springer-Verlag, Berlin-
Heidelberg-New York, (1986).

[18] N.P. Smart, “The discrete logarithm problem on ellip-
tic curves of trace one,” Journal of Cryptology 12, pp.
110–125, (1999).

[19] E. Teske, “Speeding up Pollard’s rho method for
computing discrete logarithms”, Algorithmic Number
Theory-ANTS III, LNCS 1423, pp. 541–554, (1998).

[20] E. Teske, “On random walks for Pollard’s rho
method”, Mathematics of Computation 70, pp. 809–
825, (2001).

[21] P. C. van Oorschot and M. J. Wiener, “Parallel colli-
sion search with cryptanalytic applications”, Journal
of Cryptology 12, pp. 1–28, (1999).

[22] M. J. Wiener and R. J. Zuccherato, “Fast at-
tacks on elliptic curve cryptosystems”, Selected Ar-
eas in Cryptology-SAC ’98, LNCS 1556, pp. 190–200,
(1999).

Masaya Yasuda, Tetsuya Izu, Takeshi Shimoyama and Jun
Kogure
FUJITSU LABORATORIES LTD., 1–1, Kamikodanaka 4-
chome, Nakahara-ku, Kawasaki, 211-8588, Japan
E-mail: Not available


