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Abstract. The mathematics turns out to be useful for creation of innovations in the industry, and
the mathematical knowledge and thinking manners are used effectively for that purpose. However,
this is only one aspect of the industrial mathematics where various existing mathematical knowledge
are applied for solving required subjects from industry. On the other hand, one can see the opposite
direction; Pursuit of industrial purposes inspires to create new fields of mathematics by motivating
and activating existing researches. is an important aspect of the industrial mathematics because it
does not only give tools for solving concrete problems, but also enriches the existing branches of
mathematics. In this article, as such a possible example, we discuss a fractional diffusion equation
which has been studied already comprehensively from the theoretical interests, but the researches
are expanded as a mathematical topic in view of the industrial applications.

Keywords. mathematics motivated by industrial mathematics, fractional diffusion equation, frac-
tional calculus, well-posedness, qualitative properties

1. Introduction

The diffusion of contaminants under the ground is impor-
tant and from the environmental viewpoint, better simu-
lations and predictions of the density of the contaminant
over time should be done. Morever the real size is over
a few kilometers, while one can execute only laboratory
experiments with meter sizes (see Figure 1).

As classical model equation, one can use a diffusion con-
vection equation:

ρ(x)
∂u

∂t
(x, t) = div(p(x)∇u(x, t)) + b(x) · ∇u(x, t),

where u(x, t) denotes the density at time t and the location
x. In 1992, Adams and Gelhar [1] pointed that field data
show anomalous diffusion in heterogeneous aquifer which
can not be intrepreted by the classical convection-diffusion
equation (see Figure 2). Since [1], there are trials for better
modelling and we can refer to Berkowitz, Scher and Silli-
man [6], Y. Hatano and N. Hatano [18]. See also Berkowitz,
Cortis, Dentz and Scher [5], Xiaong, G. Huang and Q.
Huang [52]. The diffusion is observed to be slower than the
prediction on the basis of the classical convection-diffusion
equation, and such anomalous diffusion is called ”slow dif-
fusion”. We refer especially to Y. Hatano and N. Hatano
[18] where the continuous-time random walk is discussed.
In the soil, one has to take into consideration the porosity
and the heterogeneity of the medium, and by the micro-
scopic level, one can conclude that the classical random
walk model may not be suitable in view of the heterogene-
ity. The continuous-time random walk is a microscopic

model for the anomalous diffusion, and by an argument
similar to the derivation of the classical diffusion equation
from the random walk, one can derive fractional diffusion
models (e.g., Metzler and Klafter [34], (pp.14-18), Sokolov,
Klafter and Blumen [50]).

The fractional diffusion equation can be described as fol-
lows. Let 0 < α < 1 throughout this paper. We consider

∂α
t u(x, t) = (Lu)(x, t)+F (x, t), x ∈ Ω, t ∈ (0, T ), (1.1)

where Ω ⊂ Rn is a bounded domain with smooth bound-
ary ∂Ω, ∂α

t denotes the Caputo fractional derivative with
respect to t and is defined by

∂α
t u(x, t) =

1
Γ(1 − α)

∫ t

0

(t − τ)−α ∂u

∂τ
(x, τ)dτ

for x-dependent function u(x, t) and

Dα
t g(t) =

1
Γ(1 − α)

∫ t

0

(t − τ)−α dg

dτ
(τ)dτ

for x-independent function g(t) (e.g., Podlubny [41]), Γ is
the Gamma function and the operator L is a symmetric
uniformly ellptic operator:

(Lu)(x) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)
)

+ c(x)u(x), x ∈ Ω,

where aij = aji, ∈ C1(Ω), c ∈ C(Ω), ≤ 0 on Ω and we
assume that there exists a constant µ > 0 such that

n∑
i,j=1

aij(x)ζiζj ≥ µ
n∑

i=1

ζ2
i
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for all x ∈ Ω and ζ1, ..., ζn ∈ R. Moreover F is a given
function in Ω × [0, T ] and T > 0 is a fixed value.

The fractional diffusion equation needs independent ma-
thematical researches, even though one can discuss sim-
ilarly to the classical convection-diffusion equation. One
has to take into consideration that some properties for the
natural number order derivatives fail for fractional order
derivatives: For example, the derivative of the product of
two functions and the sequential derivative do not hold.

We note that

lim
α→1

Dα
t g(t) =

dg

dt
(t), 0 ≤ t ≤ T

for g ∈ C2[0, T ]. In fact, the integration by parts yields

Dα
t g(t) =

1
Γ(2 − α)

(
g′(0)t1−α +

∫ t

0

(t − s)1−αg′′(s)ds

)
−→ g′(t)

as α → 1 for arbitrary t ∈ [0, T ].
This means that the Caputo derivative of order α ∈ (0, 1)

has an extended sense of the first-order derivative.
As theoretical backgrounds for e.g., better simulation re-

quested for the environmental or possible industrial appli-
cations, one can apply mathematical results which have
been already gained. However, in view of the applications,
further mathematical researches may be necessary, which
is quite a strong motivation for mathematicians and may
open new aspects of the vast field of the fractional differ-
ential equation. That is, for better applications, mathe-
maticians should sometimes modify the existing theories
and even create and develop new branches in mathemat-
ics. This is bilaterally meaningful collaboration between
mathematics and industry. We expect that the fractional
diffusion equation may be such a topic. In this article,
we intend a compact overview to such aspects concern-
ing the fractional differential equations and present results
which have been proved by the authors’ group and their col-
leagues. As for more complete descriptions and the proofs,
we refer to the original papers, e.g., Cheng, Nakagawa, Ya-
mamoto and Yamazaki [7], Sakamoto [45] and Sakamoto
and Yamamoto [46], and we omit.

The article is composed of 5 sections. In section 2, we
discuss some specific aspects of fractional calculus and in
section 3, we choose topics on ordinary fractional differ-
ential equations. In section 4, we will present results on
the well-posedness of initial/boundary value problems for
fractional diffusion equations to show qualitative proper-
ties which interpret the character as slow diffusion and in
section 5 we discuss more properties related with inverse
problems.

2. Fractional Calculus

For a function g ∈ C1[0, T ], we recall

Dα
t g(t) =

1
Γ(1 − α)

∫ t

0

(t − τ)−α d

dτ
g(τ)dτ

for 0 < α < 1. By the definition, for example, we can
calculate:

Dα
t tγ =

Γ(γ + 1)
Γ(γ + 1 − α)

tγ−α, γ > 0. (2.1)

The Caputo derivative is defined by the integral and so is
not a local operation, and several properties for the usual
calculus do not hold.

First we note that we have no useful formula for the
derivative of product of two functions:

Dα
t (fg) ̸= (Dα

t f)g + fDα
t g,

and accordingly we have no useful formula for the integra-
tion by parts (e.g., [41]).

Moreover we have no usual properties for sequential deri-
vatives in general:

Dα
t Dβ

t ̸= Dα+β
t

even if 0 < α, β < 1 and α + β < 1.
In fact, let 0 < α < 1

2 . By (2.1), we have Dα
t tα = Γ(α+1),

and Dα
t (Dα

t tα) = 0, but

D2α
t tα =

Γ(1 + α)
Γ(1 − α)

t−α,

that is, Dα
t (Dα

t tα) ̸= D2α
t tα. On the other hand, we note

by (2.1) that
Dβ

t (Dα
t tγ) = Dα+β

t tγ

if γ − α > 0. More generally we can prove

Proposition 2.1
Let f ∈ C2[0, T ] and let 0 < α, β < 1, α + β < 1. Then

Dβ
t (Dα

t f)(t) = Dα+β
t f(t), 0 ≤ t ≤ T.

Proof. We have

Dα
t f(t) =

1
Γ(1 − α)

∫ t

0

(t − s)−αf ′(s)ds

=
1

Γ(1 − α)

∫ t

0

(t − s)−α(f ′(s) − f ′(t))ds

+
1

(1 − α)Γ(1 − α)
t1−αf ′(t).

Then

(Dα
t f)′(t) =

1
Γ(1 − α)

∫ t

0

∂t((t − s)−α)

× (f ′(s) − f ′(t))ds

+
1

Γ(1 − α)

(
−
∫ t

0

(t − s)−αf ′′(t)ds

+
1

1 − α
f ′′(t)t1−α + t−αf ′(t)

)
.
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Since ∂t((t − s)−α) = −∂s((t − s)−α), we have∫ t

0

∂t((t − s)−α)(f ′(s) − f ′(t))ds

= −
∫ t

0

∂s((t − s)−α)(f ′(s) − f ′(t))ds

= −
[
(t − s)−α(f ′(s) − f ′(t))

]s=t

s=0

+
∫ t

0

(t − s)−αf ′′(s)ds

= t−α(f ′(0) − f ′(t))

+
∫ t

0

(t − s)−αf ′′(s)ds.

Hence we have

(Dα
t f)′(t) =

1
Γ(1 − α)

(∫ t

0

(t − s)−αf ′′(s)ds + t−αf ′(0)

)
.

Therefore

(Dβ
t Dα

t f)(t) =
1

Γ(1 − β)

∫ t

0

(t − s)−β(Dα
s f(s))′ds

=
1

Γ(1 − α)Γ(1 − β)

(∫ t

0

(t − s)−β

×

(∫ s

0

(s − ξ)−αf ′′(ξ)dξ

)
ds

+
∫ t

0

s−α(t − s)−βdsf ′(0)

)
.

Noting
∫ t

0

(∫ s

0
dξ
)
ds =

∫ t

0

(∫ t

ξ
ds
)

dξ and

1
Γ(1 − α)Γ(1 − β)

∫ t

0

(∫ t

ξ

(t − s)−β

× (s − ξ)−αds

)
f ′′(ξ)dξ

=
1

Γ(2 − α − β)

∫ t

0

(t − ξ)1−α−βf ′′(ξ)dξ,

by integration by parts, we have

1
Γ(1 − α)Γ(1 − β)

∫ t

0

(∫ t

ξ

(t − s)−β

× (s − ξ)−αds

)
f ′′(ξ)dξ

=
1

Γ(2 − α − β)

{[
f ′(ξ)(t − ξ)1−α−β

]ξ=t

ξ=0

+ (1 − α − β)
∫ t

0

(t − ξ)−α−βf ′(ξ)dξ

}
,

that is, (Dβ
t Dα

t f)(t) = Dα+β
t f(t). The roof of the proposi-

tion is completed.

Moreover in Luchko [25], the following is proved.
Proposition 2.2
Let g ∈ C1[0, T ] attain the maximum at t = t0 ∈ (0, T ].
Then

(Dα
t g)(t0) ≥ 0.

On the other hand, we can not determine the local be-
haviour of g near t = t0 by Dα

t g(t0) because Dα
t is not a

local operation.
As for further detailed account of fractional calculus, see

Kilbas, Srivastava and Trujillo [20], Miller and Ross [35],
Oldham and Spanier [38], Podlubny [41], Samko, Kilbas
and Marichev [47].

3. Ordinary fractional differential
equations

For discussions about the fractional diffusion equation, the
ordinary fractional differential equation is useful and is an
independent important topic. We consider

Dα
t u(t) = F (u, t), t > 0, u(0) = a. (3.1)

Here a ∈ R and F is a given function. First let F (u, t) =
λu + f(t), where λ is a constant:

Dα
t (t) = λu(t) + f(t), t > 0,

u(0) = a. (3.2)

In Gorenflo and Mainardi [15], Gorenflo and Rutman [17]
(also see pp.140-141 in [20]), it is proved that there exists
a unique solution to (3.2) and

u(t) = aEα,1(λtα) (3.3)

+
∫ t

0

(t − s)α−1Eα,α(λ(t − s)α)f(s)ds

for t > 0. Here Eα,β(t), α, β > 0, is the Mittag-Leffler
function:

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)

(see e.g., [41]) and is an entire function. Noting that

E1,1(z) = ez,

we see that (3.3) is u(t) = aeλt for α = 1 and f ≡ 0.
As for the unique existence of solution to (3.1), we can

modify arguments in Chapter 3 in Kilbas, Srivastava and
Trujillo [20] for example. See also Gorenflo and Mainardi
[16].

Similarly to the ordinary differential equation, we can
discuss the asymptotic behaviour and the dynamical sys-
tem for the fractional differential equation. Here we will
mention only few topics which should be exploited more.

Let us consider

Dα
t U(t) = AU(t), t > 0, (3.4)
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where U = (u1, ..., uN )T , ·T denotes the transpose of the
vector under consideration, and A is an N × N constant
matrix. Then we can prove
Proposition 3.1
Let 0 < α < 1 and let the real parts of all the eigenvalues
of A be negative. Then there exists a constant C > 0 such
that

∥u(t)∥ ≤ C

tα
∥u(0)∥, t > 0

for an arbitrary solution to (3.4).
Unlike the case α = 1, we can not have the exponential

decay. Moreover the decay rate t−α is the best possible
as the following example shows: Let N = 1 and consider
(3.2) with λ < 0. Then by Theorem 1.4 (pp.33-34) in [41]
implies that the solution can not decay faster than t−α. In
sections 4 and 5, we discuss similar properties of solutions
of the fractional diffusion equation as t → ∞.

In view of Proposition 3.1, we can discuss the linearized
stability for

Dα
t u(t) = Au + F (u, t)

with vector-valued function u and a suitable nonlinear term
F .

As other interesting problem, we can mention the global
existence in time to a nonlinear ordinary fractional differ-
ential equation. For example let us consider:

Dα
t u(t) = −u(1 − u), t > 0. (3.5)

In the case of α = 1, the following is well-known and can
be proved easily.
0 < u(0) < 1: the solution exists globally.
u(0) > 1: the solution can not exist globally.

However for 0 < α < 1, such a result is not known. The
difficulty comes from that Dα

t u(t) does not give information
of u(t) near t (the converse to Proposition 2.2 is not true).

We further mention a few works on the chaos for systems
of ordinary fractional differential equations and refer to Ge
and Hsu [11], Li and Peng [23] where chaoses are observed
by numerical simulations for some systems. In the latter
paper, the authors consider Dα1

t u = a(v − u),
Dα2

t v = (c − a)u − uw + cv,
Dα3

t w = uv − bw,

where 0 < α1, α2, α3 ≤ 1 and a, b, c ∈ R. However com-
prehensive researches are not yet done. See also Luchko,
Rivero, Trujillo and Pilar Velasco [27] which considers an
inverse problem of determining a memory function in ordi-
nay fractional differential equations.

4. Fractional diffusion equation

We survey results on the fractional diffusion equation (1.1).
The fractional diffusion equation has been introduced

in physics by Nigmatullin [37] to describe diffusions in
media with fractal geometry. One can regard (1.1) as a

macroscopic model derived from the continuous-time ran-
dom walk. Metzler and Klafter [34] demonstrated that a
fractional diffusion equation describes a non-Markovian dif-
fusion process with a memory. See also Metzler, Glöckle
and Nonnenmacher [32], Metzler and Klafter [33], Roman
[43]. Roman and Alemany [44] investigated a continuous
time random walks on fractals and showed that the aver-
age probability density of random walks on fractals obeys a
diffusion equation with a fractional time derivative asymp-
totically. Ginoa, Cerbelli and Roman [13] presented a frac-
tional diffusion equation describing relaxation phenomena
in complex viscoelastic materials. Here we refer to several
works on the mathematical treatments for equation (1.1).
Kochubei [21], [22] applied the semigroup theory in Ba-
nach spaces, and Eidelman and Kochubei [8] constructed
the fundamental solution in Rn and proved the maximum
principle for the Cauchy problem. See also Mainardi [28]
- [31] and Schneider and Wyss [49]. Gejji and Jafari [12]
solved a nonhomogeneous fractional diffusion-wave equa-
tion in a 1-dimensional bounded domain. Fujita [10] dis-
cussed an integrodifferential equation which interpolates
the heat equation and the wave equation in an unbounded
domain. Agarwal [3] solved a fractional diffusion equation
using a finite sine transform technique and presented nu-
merical results in a 1-dimensional bounded domain.

We will solve equation (1.1) satisfying the following ini-
tial-boundary value conditions:

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (5.1)

u(x, 0) = a(x), x ∈ Ω. (5.2)

In spite of the importance, to the authors’ best knowl-
edge, there are not many works published concerning the
unique existence of the solution to (1.1), (5.1) and (5.2)
and the properties are remarkably different from the stan-
dard diffusion. In Prus̈s [42] (especially in Chapter I.3),
one can refer to the methods for (1.1). See also Bazhlekova
[4] and Gorenflo, Luchko and Zabrejko [14], Gorenflo and
Mainardi [16].

The maximum principle for (1.1) with (5.1) is recently
proved in Luchko [25] and see also a new paper Luchko
[26] which proves the well-posedness of the forward problem
(1.1), (5.1) and (5.2), but we will here present more detailed
regularity and qualitative properties.

In particular, for discussions on inverse problems, we
need representation formulae of the solution to (1.1), (5.1)
and (5.2) by the eigenfunctions, and to the authors’ best
knowledge, there are no results published concerning the
regularity properties of the eigenfunction expansions of the
solutions which are corresponding to Chapter 3 of Lions
and Magenes [24] and Pazy [39] for example.

In this section, we will show the well-posedness of the
solution given by the Fourier method. Second we establish
several uniqueness results for related inverse problems.

Let L2(Ω) be a usual L2-space with the scalar product
(·, ·). We denote the Sobolev spaces by Hℓ(Ω) with ℓ > 0
(e.g., Adams [2]).
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We define an operator L in L2(Ω) by

(Lu)(x) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)
)

+ c(x)u(x), x ∈ Ω,

D(L) = H2(Ω) ∩ H1
0 (Ω).

Here and henceforth Cj denote positive constants which
are independent of F in (1.1), a, b in (5.1) and (5.2), but
may depend on α and the coefficients of the operator L.

Since −L is a symmetric uniformly ellitpic operator, the
spectrum of L is entirely composed of eigenvalues and coun-
ting according to the multiplicities, we can set: 0 < λ1 ≤
λ2 ≤ · · · . By φn ∈ H2(Ω)∩H1

0 (Ω) we denote the orthonor-
mal eigenfunction corresponding to −λn: Lφn = −λnφn.
Then the sequence {φn}n∈N is orthonormal basis in L2(Ω).

We are ready to state our main theorems on the unique
existence of solution to (1.1), (5.1) and (5.2).
Theorem 4.1
Let F = 0.
(i) For a ∈ L2(Ω), there exists a unique solution u ∈
C([0, T ];L2(Ω))∩C((0, T ]; H2(Ω)∩H1

0 (Ω)) such that ∂α
t u ∈

C((0, T ];L2(Ω)). Moreover there exists a constant C1 > 0
such that

∥u∥C([0,T ];L2(Ω)) ≤ C1∥a∥L2(Ω),

∥u(·, t)∥H2(Ω) + ∥∂α
t u(·, t)∥L2(Ω) ≤ C1t

−α∥a∥L2(Ω)

for all a ∈ L2(Ω). The eigenfunction expansion holds:

u(x, t) =
∞∑

n=1

(a, φn)Eα,1(−λntα)φn(x)

in C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩ H1
0 (Ω)).

(ii) There exists a constant C2 > 0 such that

∥u∥L2(0,T ;H2(Ω)) + ∥∂α
t u∥L2(Ω×(0,T )) ≤ C2∥a∥H1(Ω)

for all a ∈ H1
0 (Ω).

(iii) There exists a constant C3 > 0 such that

∥u∥C([0,T ];H2(Ω)) + ∥∂α
t u∥C([0,T ];L2(Ω)) ≤ C3∥a∥H2(Ω)

for a ∈ H2(Ω) ∩ H1
0 (Ω).

Theorem 4.2
Let a = 0 and F ∈ L2(Ω × (0, T )). Then there exists
a unique solution u ∈ L2(0, T ; H2(Ω) ∩ H1

0 (Ω)) and there
exists a constant C4 > 0 such that

∥u∥L2(0,T ;H2(Ω)) + ∥∂α
t u∥L2(Ω×(0,T ))

≤ C4∥F∥L2(Ω×(0,T ))

for all F ∈ L2(Ω × (0, T )). Moreover

u(x, t) =
∞∑

n=1

∫ t

0

(F (·, t − τ), φn)τα−1

× Eα,α(−λnτα)dτφn(x).

Remark. These resutls include the case of α = 1
For θ ∈ (0, 1), we set

∥F∥Cθ([0,T ];L2(Ω)) = ∥F∥C([0,T ];L2(Ω))

+ sup
0≤t<s≤T

∥F (·, t) − F (·, s)∥L2(Ω)

|t − s|θ
.

Next we show the maximal regularity for
F ∈ Cθ([0, T ]; L2(Ω)).
Theorem 4.3
Let a ∈ L2(Ω) and F ∈ Cθ([0, T ]; L2(Ω)).
The solution u is represented by eigenfunction expansion:

u(x, t) =
∞∑

n=1

{
(a, φn)Eα,1(−λntα)

+
∫ t

0

(F (·, t − τ), φn)τα−1Eα,α(−λnτα)dτ

}
φn(x).

(1) For arbitrary δ > 0, there exists a constant C5 =
C5(δ) > 0 such that

∥Lu∥Cθ([δ,T ];L2(Ω)) + ∥∂α
t u∥Cθ([δ,T ];L2(Ω))

≤ C5

δ
(∥F∥Cθ([δ,T ];L2(Ω)) + ∥a∥L2(Ω))

for all a ∈ L2(Ω) and F ∈ Cθ([0, T ]; L2(Ω)).
(2) There exists a constant C6 > 0 such that

∥Lu∥C([0,T ];L2(Ω)) + ∥∂α
t u∥C([0,T ];L2(Ω))

≤ C9(∥a∥H2(Ω) + ∥F∥Cθ([0,T ];L2(Ω)))

for a ∈ H2(Ω) ∩ H1
0 (Ω) and F ∈ Cθ([0, T ]; L2(Ω)).

(3) Let a = 0. There exists a constant C7 > 0 such that

∥Lu∥Cθ([0,T ];L2(Ω)) + ∥∂α
t u∥Cθ([0,T ];L2(Ω))

≤ C7∥F∥Cθ([0,T ];L2(Ω))

for all F ∈ Cθ([0, T ]; L2(Ω)) satisfying F (·, 0) = 0.

This is the same as the case of α = 1. Prüss [42] already
proved Theorem 4.3 (3).
Corollary 4.1 (slow decay)
Let a ∈ L2(Ω) and F = 0. Then thers exist constants
C8, C9 > 0 such that

∥u(·, t)∥L2(Ω) ≤
C8

1 + λ1tα
∥a∥L2(Ω), t ≥ 0,

∥∂m
t u(·, t)∥L2(Ω) ≤

C9

tm
∥a∥L2(Ω), t > 0, m ∈ N

for all a ∈ L2(Ω). Here C9 is independent of m.

Here we compare our results with the case α = 1: t−α-
decay for 0 < α < 1 but the exponential decay for α = 1.

We can consider α > 1 similarly and see Sakamoto [45],
Sakamoto and Yamamoto [46].
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5. Further qualitative results for the
fractional diffusion equation

5.1. Backward problem in time

It is well-known that the backward problem in time is sev-
eraly ill-posed for the parabolic problem (i.e., α = 1). The
severe ill-posedness means that we can not recover the sta-
bility in the backward problem even if we strengthen the
norm within Sobolev norms for estmating the initial value
in L2(Ω). For 0 < α < 1, the backward problem is moder-
ately ill-posed, as the following theorem imlies:

Theorem 5.1
Let 0 < α < 1. For arbitrary T > 0 and arbitrary a1 ∈
H2(Ω) ∩ H1

0 (Ω), there exists a unique solution
u ∈ C([0, T ]; L2(Ω)) ∩ C((0, T ]; H2(Ω) ∩ H1

0 (Ω)) such that
u(·, T ) = a1 to the forward problem (1.1), (5.1) and (5.2)
with F = 0. Moreover there exist constants C10, C11 > 0
such that

C10∥u(·, 0)∥L2(Ω) ≤ ∥u(·, T )∥H2(Ω)

≤ C11∥u(·, 0)∥L2(Ω).

5.2. Uniqueness of solution

The solution can be uniquely determined by data in any
small subdomain over time interval. This is closely related
with the approximate controllability (e.g., Georg Schmidt
and Weck [48]) but we will omit further discussions.

Theorem 5.2
Let 0 < α < 1.
Let spatial dimension ≤ 3, a ∈ H4

0 (Ω),

∂α
t u =

n∑
i,j=1

∂

∂xi
(aij(x)

∂

∂xj
u) + c(x)u,

u|∂Ω = 0 and u = 0 in ω × (0, T ) with arbitrary subdomain
ω and T > 0. Then u = 0 in Ω × (0, T ).

5.3. Decay at t = ∞

Non-trivial solutions can not decay faster than polynomial
orders, which implies the slow diffusion for 0 < α < 1. See
also Corollary 4.1 in section 4.

Theorem 5.3 Let 0 < α < 1, ω be an arbitrary subdo-
main, let spatial dimension ≤ 3 and a ∈ H4

0 (Ω), ∂α
t u =∑n

i,j=1
∂

∂xi
(aij(x) ∂

∂xj
u) + c(x)u, u|∂Ω = 0. Let for all

m ∈ N, there exists a constant C(m) > 0 such that
∥u(·, t)∥L∞(ω) ≤ C(m)

tm as t → ∞. Then u = 0 in Ω ×
(0,∞).

5.4. Other inverse problem

Let p > 0 on [0, ℓ] and p ∈ C2([0, ℓ]). We consider

∂α
t u(x, t) =

∂

∂x

(
p(x)

∂u

∂x

)
, 0 < x < ℓ, 0 < t < T,

u(x, 0) = δ(x) : delta function,

ux(0, t) = ux(ℓ, t) = 0.

It is practically difficult to determine the order α a priori
and it is important to determine the order α and the dif-
fusion coefficient p(x) by available observation data at the
boundary point x = 0 over time interval. Thus the follow-
ing inverse problem is significant.
Inverse problem: Determine α ∈ (0, 1) and p(x), 0 <
x < ℓ by u(0, t), 0 < t < T .

Then the uniqueness is proved in Cheng, Nakagawa, Ya-
mamoto and Yamazaki [7] by means of the Gel’fanf-Levitan
theory (see e.g., Freiling and Yurko [9]) and the eigenfunc-
tion expansion. Fixed α = 1, a similar inverse problem is
considered in Murayama [36], Pierce [40], Suzuki and Mu-
rayama [51]. By the results in section 4, we can consider
other types of inverse problems and we refer to Isakov [19]
as monographs on inverse problems for partial differential
equations.
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